
 
 

WHIRC Report VI – Mean-Variance Analysis 
 

Dick Joyce 
5 January 2010; revised 28 October 2010 

 

1.  Fowler-Mortara Mean-Variance Analysis 
 
Modern electronic detectors are read out in a digital/analog/digital process, in which the 
electrons are collected on a capacitor (usually a potential well produced by reverse bias of 
a diode junction), read out as an analog voltage, then converted again to a digital output 
by an analog-to-digital converter.  The relation between the physical signal in electrons 
and the “arbitrary digital units” (ADUs) which comprise the observed data can be 
determined by an analysis of the noise as a function of the signal level.  This analysis, 
generally referred to as a Photon Transfer Curve (PTC) or mean-variance analysis, 
involves generating a dataset of images taken at signal levels ranging from near zero 
(darks) to the saturation level of the detector, and calculating both the mean level and 
standard deviation of the mean of an ensemble of images at each signal level. 
 
Under the assumption that the only sources of noise are the zero-signal (read) noise and 
the Poisson noise of the photon (or dark current) signal, Mortara and Fowler (1981, SPIE, 
290, 28) defined the variance of the image (in electrons) as  
 

Ve = Nre
2 + Se     [1] 

 
Where Nre and Se are the read noise and signal, in electrons. 
 
If g is the conversion gain in e/ADU, then 

 
g2Vadu = g2Nradu

2 + gSadu     [2] 
 

Sadu = g (Vadu – Nradu
2)     [3] 

 
log (Vadu – Nradu

2) = log (Sadu) – log (g)     [4] 
 

By measuring the standard deviation and mean signal in ADU and determining the read 
noise from the zero-signal noise, one can plot the read-noise subtracted variance against 
the mean signal to obtain a linear curve of slope=1.0, whose X intercept is the gain. 
 
If one writes equation [3] as 
 

Vadu = Nradu
2 + g-1 Sadu     [5] 

 
Then one should get a linear plot whose Y intercept is Nradu

2 and slope is 1/g. 
 



Although both techniques should give the same result, the author prefers the logarithmic 
analysis because it permits one to display a greater range of data and the requirement that 
the fit must have a slope of 1.0 provides a discriminant against flaky or unreliable data.  
Because the large signal/variance data points exert significant leverage on the Y-intercept 
when using the linear analysis, one must “anchor” the fit using the measured read noise 
variance from dark frames as the Y-intercept. 
 
2.  Models 
 
Unfortunately, real detectors complicate this analysis because they contain various 
artifacts such as pixels which are dead, unusually noisy, or variable in sensitivity.  It can 
be difficult to differentiate pixel sensitivity variations due to quantum efficiency from 
those due to node capacitance.  The first of these usually results from variations in the 
efficiency of the anti-reflection coating on the detector, whereas the second manifests in a 
real difference in the conversion gain. 
 
To test the techniques of mean-variance analysis, we generated images using the IRAF 
task ‘mknoise’, which allows one to specify the conversion gain, read noise, signal level 
in ADU, and whether to include the Poisson noise from the signal into the image.  In 
keeping with the nominal WHIRC characteristics, the gain was set to 4.0 e/ADU and the 
read noise to 40 e.  Signal levels from 0 to 50000 ADU were used to generate images, 
and ten images at each signal level were randomly generated to simulate the technique 
used for obtaining PTC data with WHIRC. 
 
2.1  Uniform Images 
 
In the first case, the images produced by ‘mknoise’ were uniform, having the same mean 
level over the entire 2048 × 2048 image.  The mean and standard deviation were 
calculated in the same way as with WHIRC data, using the IRAF task ‘imcomb’ to 
calculate mean and sigma images (in the latter, the value of each pixel is the standard 
deviation of the mean of the values for that pixel in the input images).  Since the only 
noise, by definition, was the read and Poisson noise, no rejection was employed.  The 
results are shown in Figure 1, where the data are plotted both logarithmically and 
linearly. 
 
In the logarithmic plot, the subtraction of the read noise variance yields a linear plot of 
unity slope, but the X intercept is closer to 4.2 than the 4.0 which was the input to the 
IRAF task.  The Y intercept is at 94.6.  The linear plot to the total variance yields a good 
fit to a linear plot with a slope of 0.236 and a Y intercept of 94.7.  This translates to g = 
4.23 and a read noise of 41.2 e.  The two results are, as expected, the same.  However, 
there is clearly something about the way in which the ‘imcomb’ task calculates the sigma 
images which results in a gain which is different from the expected value. 
 
As an experiment, we looked at the mean images from the ‘imcomb’ task and calculated 
the spatial statistics using ‘imstat’.  Again applying both the logarithmic and linear 
approaches (Figure 2), we now get values for the read noise variance (99.9 and 100.3,  



  
 
Figure 1:  Logarithmic (top) and linear (bottom) plots of the mean-variance analysis 
for model images generated using the IRAF task ‘mknoise’.   The variance was 
determined on a pixel-by-pixel basis, using the IRAF task ‘imcomb’ to generate 
mean and sigma images from 10 independently generated images.  The gain was 
defined to be 4.0 e/ADU, the read noise 40 e, with constant background levels 
ranging from 0 to 50000 ADU.  The only sources of noise are the read noise and the 
Poisson noise corresponding to the uniform background.  In all of these plots, the x 
symbols represent the variance of the total noise and the dots represent the variance 
with the square of the read noise subtracted.  Note that the gain derived from this 
analysis is slightly larger than the input parameter to the IRAF task.



 
 
Figure 2:  Same as Figure 1, except that the variance was generated from the spatial 
statistics of the mean image.  Note that this gives a fit which is closer to the true gain 
value of 4.0, but implicitly assumes that the image is precisely flat. 



respectively) and gain (4.0 for both) which are the anticipated values.  The same number 
of pixels is involved in both approaches; in the first, one generates a sigma image from 
10 individual images and averages over the 4 x 106 pixels of that image; in the second, 
one averages the 10 images and calculates the sigma over the 4 x 106 pixels.  From the 
viewpoint of the astronomer, the latter is more consistent with determining the limiting 
performance, since one is attempting to detect a source against a spatial structure of 
noise.  However, the approach assumes that the underlying response of the detector be 
uniform, which is almost never the case in the real world. 
 
2.2  Nonuniform Images 
 
To simulate the variation in sensitivity which is seen with real detectors, we generated 
“mixed” images consisting of a combination of different signal levels.  For example, the 
uniform 10000 ADU images consisted of ten independently derived ‘mknoise’ images 
with a mean level of 10000 ADU.  The “mixed” 10000 ADU images required the 
generation of ten independent ‘mknoise’ images with mean levels of 9000, 10000, and 
12000 ADU (each with its level of Poisson noise).  These were copied into the final 
images in the respective proportion of 15%, 80%, and 5% to mimic the sensitivity falloff 
at the top and bottom of the WHIRC array, as well as the elevated pupil ghost in the 
center.  These “mixed” images were then analyzed in the same way as the uniform 
images. 
 
The approach of calculating statistics on a pixel-by-pixel basis gave results (Figure 3) 
which were almost identical to those for the uniform images.  One can see, particularly in 
the linear plot, that the mean values are slightly lower (the mean for the 10000 ADU 
mixed image is 9951 ADU), but the fit to the data in both approaches yields essentially 
the same result for the gain and read noise.  This suggests that small variations from the 
mean value do not greatly affect the analysis, provided the variations are a result of 
photon collection efficiency (antireflection coating variations, pupil ghost).  If the 
conversion gain varied significantly over the array, then characterizing the entire array 
with a single gain would not be appropriate. 
 
Calculating statistics of the mixed images using spatial statistics failed miserably, as one 
might expect, since the variance was dominated completely by the spatial structure of the 
mean value rather than the Poisson statistics of the signal (Figure 4).   



 
 
 
Figure 3:  Same as Figure 1, except that each image consists of a mix of pixels at the 
nominal ADU level (80%), 10 percent below the nominal level (15%), and 20 
percent above the nominal level (5%).  This was to simulate the lower response at 
the top and bottom of the array, as well as the central pupil ghost seen in WHIRC 
images.  As expected, the mean value for each image is slightly less than that in 
Figure 1, but the gain determined from the analysis is essentially identical. 



 
 
Figure 4:  Same as Figure 3, except that the statistics were determined from the 
spatial statistics of the mean image, as in Figure 2.  Note that the mix of mean pixel 
values completely dominates the variance and makes the mean-variance analysis 
impossible. 
 



2.2.1 Difference Analysis 
 
Schubnell et al. (2006, SPIE, 6276), in their report on the analysis of the infrared 
detectors for SNAP, noted that the conversion gain can be calculated even for images 
with spatial variation by taking two images with the same illumination and calculating 
the difference and sum of the two images.  The difference image should have a mean 
value of 0.0, but the noise will be that of the sum of the two images: 
 

Ve = 2Nre
2 + Se1 + Se2    [6] 

 
This is identical to equation [1], except that the zero-signal variance is twice the square of 
the read noise.  Since the spatial variations due to illumination variations should be 
eliminated from the difference image, one may use spatial statistics (which involve a 
large number of pixels) to calculate the sigma of the difference image and the mean of the 
sum image, which can then be analyzed using either the linear or logarithmic method. 
 
To evaluate this, we analyzed the “mixed” images described above, calculating the 
difference and sum of only two images for each illumination level.  The results, plotted in 
Figure 5, demonstrate that this technique yields reliable results. 
 
As an extreme case, we generated “supermixed” images in which half of each image 
consisted of the next highest illumination level (e.g., half at 10000 ADU, half at 20000 
ADU).  These dramatically nonuniform images nonetheless yielded the correct values for 
the gain and read noise (Figure 6). 
 
3.  Conclusions from Model Images 
 

• For the model data, the logarithmic and linear approaches give the same results, 
as one might expect.  The author will argue that the logarithmic approach, by 
requiring the slope to be 1.0, offers a better diagnostic of spurious data in real 
images, which might simply yield a different slope (and gain) in the linear 
approach.  However, unreliable data in the linear approach would probably also 
yield an unreasonable Y intercept. 

• It is not clear why the image averaging with ‘imcomb’ appears to give a sigma 
image which is less than that which is obtained by the spatial averaging, resulting 
in a calculated gain (by either technique) which is too high. 

• The approach suggested by Schubnell et al. (which the author admittedly never 
thought of) appears to be worthy of consideration.  The use of spatial statistics 
involves a much larger number of pixels and should give a better fit with real 
data.  Calculating statistics on the difference image should eliminate sensitivity 
variations across the array and subtract out dark current.   

• All of the mean-variance analysis techniques assume that the only sources of 
noise are the read noise and signal-dependent Poisson noise.   Noisy or maverick 
pixels will contribute additional noise, but if they are relatively few in number, 
their contribution to the overall variance and mean, averaged over the entire array, 



should be small.  This technique is evaluated with the existing WHIRC PTC data 
in the next section. 

• It is also worthwhile to carry out the difference/sum analysis for various 
subregions, as this could indicate variation in the conversion gain over the array.  
It is unlikely that such variations would be larger than the variations seen in raw 
flatfield images. 

 

 
Figure 5:  Mean-variance analysis using the difference/sum of two images at each 
intensity level, as described in Schubnell et al. (2006), using the mixed intensity 
images described in Figure 3.  This method uses the spatial standard deviation of the 
difference image and the spatial mean of the sum image. 



 
 

Figure 6:  Same as Figure 5, except the mixed images consisted of 50% pixels at one 
intensity level and 50% at the next highest intensity level, as much as a factor of two 
greater.  Even though the mean of the sum images are very different from those in 
Figure 5, the mean-variance analysis yields the correct gain. 



4.  Mean-Variance Analysis of WHIRC Detector 
 
Several measurements of the conversion gain of the WHIRC detector were made during 
the instrument commissioning in concert with optimizing the performance as a function 
of the detector bias and readout mode.  After replacing the IRAcq board in the Monsoon 
controller in mid-2008, we obtained a dataset on 17 September 2008 which we used for 
both linearity and gain (PTC) analysis.  This involved illuminating the detector with a 
constant light source from the flatfield projector and obtaining five images each with 
integration times ranging from 3.8 to 85 s.  To verify the constancy of the illumination for 
the linearity analysis, three “check” images at an integration time of 3.8 s were obtained 
between each increment in integration time.  As noted below, while the “check” images 
were useful in verifying the source constancy for the linearity analysis, they complicated 
the mean-variance analysis using image statistics. 
 
4.1  Image Statistics Analysis of September 2008 Data 
 
The five images at each integration time were combined using the IRAF ‘imcomb’ task to 
generate mean and sigma images, as in section 2.1 above.  The read noise was determined 
through a separate set of dark images to be 8.9 ADU.  Image statistics were initially 
calculated for a number of 100 × 100 pixel subregions at various locations on the array, 
but to reduce the scatter in the statistics, we also calculated the image statistics for the 
entire array, excluding a 100 pixel border which seemed to have a large number of high 
dark current pixels.  The results, plotted in Figure 7, suggest a gain of 3.8 – 4.0 e/ADU 
from analysis of the logarithmic plot.   These gain curves are also shown on the linear 
display of the PTC data. 
 
One feature of both the logarithmic and linear plots is the tendency of the variance to rise 
above the linear slope (on the log plot) for large signals, suggesting an additional source 
of noise.  Note that an unbiased fit to the linear plot would result in a different slope and 
an unphysical negative Y-intercept.  A closer look at the individual frames showed that 
the mean values for large signals increased over the five data frames at a given 
integration time (and decreased over the three check frames immediately following; 
Figure 7).  This is most likely a consequence of image persistence, which is known to 
exist at a low level in this detector from the ghost image experiment 
(WHIRC_IV_ghosts_080808.pdf).  The drift in mean value with succeeding images will 
translate into an increased variance for the sigma image and yield the observed behavior. 

 
Figure 7:  Signal levels for the average and last image of the check images. 



 
Figure 8:  Mean-variance analysis of the PTC data of 17 September 2008 using 
image statistics.  The logarithmic plot was used to determine a gain value 3.8 – 4.0 
e/ADU for a read noise of 8.9 ADU.  Curves for these parameters were overplotted 
on the data in the linear plot. 

 



4.2  Sum-difference Analysis of September 2008 Data 
 
The sum-difference analysis was applied to the same PTC dataset from 17 September 
2008.  Because five images were taken at each integration time, four sums and 
differences were calculated independently and plotted. 
 
As with the image analysis, the logarithmic plot was used to determine the best fit to the 
gain (the read noise in ADU using this technique was somewhat larger, 10.4 ADU).  
However, the resulting gain is significantly lower, about 3.3 e/ADU vs the 3.8 e/ADU 
determined from the image analysis technique (Figure 9).  This is an even larger 
difference (12%) than is seen between the two techniques for the model data (5%).  The 
reason for this is not known.  A line with the appropriate slope (0.303) and Y-intercept 
(220) is shown plotted on the linear representation. 
 
One of the datasets deviates from the linear fit; this is the difference/sum of the first two 
images at each of the integration times where the persistence effects are likely to be most 
pronounced.  A later PTC experiment which utilized a constant integration time and 
variable flux levels did not show this tendency (section 4.3). 
 
The variance for sum image values between 14000 and 22000 ADU (i.e., single image 
mean values 7000 – 11000 ADU) lies significantly above the fit.  Unlike the case at 
higher signal levels, this discrepancy is not necessarily greatest for the first two images in 
the set.  This effect is an artifact of the bad row (286) and column (97) in the array, 
which for some reason produced excess noise in the subtracted images at certain flux 
levels.  Cleaning the images with the IRAF task ‘fixpix’ and  the WHIRC  bad pixel map 
eliminates the excess noise. 



 
Figure 9:  Mean-variance analysis of the 17 September 2008 data using the 
sum/difference analysis.  The logarithmic plot was used to determine a gain value 
3.3 e/ADU for a read noise of 10.4 ADU.  Curves for these parameters were 
overplotted on the data in the linear plot.  The deviation in the 14000 – 22000 ADU 
range is a result of the bad row and column, and is eliminated by filtering through 
the bad pixel map (see following figures). 



4.3 Analysis of November 2009 and July 2010 Data 
 
On 4 November 2009, we obtained another set of PTC data at the end of a T&E night.  
Since linearity was not part of the experiment, the integration time was held at a constant 
5 s and the intensity of the flatfield lamp was varied.  Five images were taken at each 
intensity setting.  In addition to being quicker, this strategy also permitted us to obtain 
data over the entire range from no signal to saturation. 
 
The analysis is plotted in Figure 10.  Again, the logarithmic analysis was used to 
determine the gain and read noise (which was somewhat higher ~ 14 ADU due to some 
electrical pickup).  The data were consistent with the gain of 3.3 e/ADU obtained from 
the September 2008 data, but there is less scatter among the four difference/sum images 
because the observing technique minimized the effects of image persistence.  The results 
from the logarithmic analysis were overlaid on the linear plot to demonstrate the quality 
of the fit.  In this case, anchoring the linear data plot to a Y-intercept of 400 and 
determining the slope would have probably independently yielded a slope close to that 
expected for a gain of 3.3. 
 
The IRAF task ‘fixpix’ was used with the bad pixel map to clean the image.  This 
eliminated the deviation from the fit in the 6000 – 12000 ADU range seen in the 
September 2008 data. 
 
A second set of data taken 30 July 2010 and cleaned with the ‘fixpix’ task yields virtually 
identical results, with a best fit gain closer to 3.4.  Since this dataset contains a greater 
number of points, we will adopt 3.4 as the gain value. 



 
Figure 10:  Mean-variance analysis of the 4 November 2009 data using the 
sum/difference analysis.  The logarithmic plot was used to determine a gain value 
3.3 e/ADU for a read noise of 14 ADU.  Curves for these parameters were 
overplotted on the data in the linear plot.  



Figure 11:   Mean-variance analysis of another dataset obtained 30 July 2010 using 
the sum/difference analysis.  The logarithmic plot was used to determine a gain 
value 3.4 e/ADU for a read noise of 14 ADU.  Curves for these parameters were 
overplotted on the data in the linear plot. 
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