
A Reference Guide for the IRAF Client Display Library (CDL)

Michael Fitzpatrick

NOAO/IRAF Group

February 1997

Revised March 1998

ABSTRACT

The Client Display Library (CDL) is a host interface for C, Fortran or SPP
programs allowing them to display images or overlay graphics to display servers
such as XImtool or SAOimage / SAOtng. High-level procedures allow IRAF or
FITS images to be displayed simply, other routines permit access to all other
server functions (e.g. cursor and image readback, frame selection, etc). The
library also features a number of functions for doing image overlay graphics;
supported graphics primitives include numerous point shapes, lines, circles,
ellipses, polygons, annular shapes, and text.

March 4, 1998

Contents

1 Introduction.. 1

2 Getting Started ... 1

3 Server Connections .. 2
3.1 Domain Sockets... 2
3.2 Named FIFO Pipes .. 3
3.3 Inet Sockets ... 3
3.4 User-Defined Connections... 3

4 Image Display ... 3
4.1 Overview of the Display Process.. 3
4.2 Displaying IRAF Images... 4
4.3 Displaying FITS Images ... 4
4.4 Displaying Raw Pixels .. 5
4.5 Frame Selection... 5
4.6 Clearing the Display.. 5
4.7 Frame Buffer Selection.. 5

4.7.1 Automatic Selection .. 6
4.7.2 The Frame Buffer Configuration File.. 6

4.8 Image WCS Description.. 6
4.9 Image Colormaps .. 7

4.9.1 Imtool Color Model... 7
4.10 ZScale Intensity Mapping ... 8
4.11 Image Hardcopy .. 9
4.12 Image Cursor ... 9

4.12.1 Cursor Sampling .. 9
4.13 Image Readout... 9
4.14 Subraster I/O.. 9

5 Graphics Overlay ... 10
5.1 Marker Coordinates ... 10
5.2 Mapping a Previously Displayed Image... 10
5.3 Marking a Coordinate File .. 10
5.4 Marker Colors.. 10
5.5 Marker Types... 11

5.5.1 Point ... 11
5.5.2 Line .. 11
5.5.3 Box... 12
5.5.4 Circle.. 12
5.5.5 Polyline .. 12
5.5.6 Polygon .. 12
5.5.7 Ellipse .. 12
5.5.8 Circular Annuli .. 12
5.5.9 Elliptical Annuli .. 13
5.5.10 Text .. 13

5.6 Text Fonts.. 13
5.6.1 In-line Font Changes ... 13

5.7 Line Widths and Styles ... 14
5.8 Deleting Markers ... 14

5.8.1 Individual Markers... 14
5.8.2 The Entire Overlay .. 15

5.9 Redrawing the Overlay.. 15

- 2 -

6 ANSI C Function Prototypes.. 15

7 Fortran Language Binding Notes .. 15

8 SPP Language Binding Notes... 15

9 IIS Protocol Description.. 16

10 VXIMTOOL Proxy/Display Server Usage.. 18

11 C Interface Summary .. 19

12 C Example Tasks ... 21
12.1 Display Example ... 21
12.2 Interactive Graphics Overlay Example ... 24
12.3 Image Mosaic Example... 28

13 Fortran Interface Summary ... 30

14 Fortran Example Tasks... 32
14.1 Display Example ... 32
14.2 Interactive Graphics Overlay Example ... 33

15 SPP Interface Summary.. 35

A Reference Guide for the IRAF Client Display Library (CDL)

Michael Fitzpatrick

NOAO/IRAF Group

February 1997

Revised March 1998

1. Introduction
For more than a decade IRAF has used a display server as the primary means for image

display. IRAF client tasks connect to the server and send or read data using a modification of
the IIS Model 70 protocol, originally through named fifo pipes but more recently using unix
domain or inet sockets. The advantage to this approach was that IRAF client tasks could make
use of the image display functionality without duplicating the code needed for actually display-
ing the image. The longtime disadvantage was that the IIS protocol used was arcane and undo-
cumented and therefore largely unavailable to applications outside of the IRAF project. The
Client Display Library (CDL) provides a public C and Fortran interface for displaying images
and overlay graphics that is independent of the underlying protocol used.

Unlike the interface used by IRAF applications, the CDL is meant to provide an easy-to-
use, fully featured interface for applications that can be easily evolved for future display
servers, communications schemes, or display functionality. Indeed, the CDL is independent of
IRAF itself (as are the display servers) so display tasks can be written for any discipline or
application.

While this guide assumes programs are written in C, Fortran programmers should find the
translation straightforward by referring to the Fortran interface summary. The package source
files include example tasks as does this guide; users with problems, questions, or bug reports are
encouraged to contact iraf@noao.edu. A small code sample demonstrating the problem would
be very helpful in finding a solution to any reported problems.

2. Getting Started
All C programs must include the header file "cdl.h" in order to get package definitions

for constants such as colors and structure definitions used. The Fortran interface does not
require anything similar, however for fortran compilers which support an include directive a
cdlftn.inc file may be used to define symbolic constants passed to procedures, this file must be
included by each procedure using the CDL. Fortran programs not using this file must pass in
the constants explicitly, needed values are found throughout this manual. C procedures which
return an integer value will return a positive number to indicate an error has occurred and print
an error message, otherwise zero is returned.

The cdl_open() procedure is used to establish a connection to the server and initialize the
package, it returns a CDL structure pointer that is passed to other CDL procedures. For C pro-
grams this means a separate pointer may be maintained for each server connection, the Fortran
interface is limited to only one server connection per process since the pointer is maintained
internally. The connection is terminated using the cdl_close() procedure. Between these two
calls may be any combination of CDL procedure calls for doing image display or overlay graph-
ics.

- 2 -

For example, the simplest possible program for displaying an IRAF image would look
something like:

#include "cdl.h"

main (int argc, char *argv[])
{

CDLPtr cdl = cdl_open ((char *)0);
cdl_displayIRAF (cdl, argv[1], 1, 1, 1, 1);
cdl_close (cdl);

}

This program displays band one of an image named on the command line to the server in frame
one using the default 512x512 frame buffer, zscaling the pixels to 8-bit values automatically. No
error checking is performed to verify that a connection was established or that the argument is a
valid IRAF image. Most programs will be more complex than this but it should be clear that
image display from client applications is a now trivial operation.

Synopsis

#include "cdl.h"

CDLPtr cdl_open (char *imtdev)
void cdl_close (CDLPtr cdl)

3. Server Connections
The cdl_open() procedure takes a single argument specifying the type of connection to

make to the server, this routine also initializes the CDL package. If this is a NULL pointer the
CDL will attempt to first connect on a unix domain socket, if that fails the standard IRAF
/dev/imt1* fifo pipes are tried. The syntax for the imtdev argument is as follows:

<domain> : <address>

where <domain> is one of "inet" (internet tcp/ip socket), "unix" (unix domain socket) or "fifo"
(named pipe). The form of the address depends upon the domain, as illustrated in the examples
below. The address field may contain up to two "%d" fields. If present, the user’s UID will be
substituted (e.g. "unix:/tmp/.IMT%d"). The default connection if no imtdev is specified is
"unix:/tmp/.IMT%d", failing that a connection is attempted on the /dev/imt1[io] named fifo
pipes.

3.1. Domain Sockets
Domain sockets are sockets created on the local host. The connection is usually faster

than an inet socket and comparable to a fifo. If the socket name is specified with a ’%d’ field
the client can be assured of a unique socket name for each user allowing multiple clients to be
run on the same host by different users.

Example

/* Connection to a local host using socket domain socket. */
if ((cdl = cdl_open ("unix:/tmp/.IMT%d")) == NULL) {

fprintf (stderr, "cannot open domain socket connection\n");
exit (1);

}

- 3 -

3.2. Named FIFO Pipes
This is the traditional approach, and the only one supported by SAOimage (although

recent versions contain support for sockets). Any named fifo pipe may be used, the syntax for
the imtdev string in this case is

fifo:<input_fifo>:<output_fifo>

Example

/* Connection to a local host using named fifo pipes. */
if ((cdl = cdl_open ("fifo:/dev/imt1i:/dev/imt1o")) == NULL) {

fprintf (stderr, "cannot open fifo pipe connection\n");
exit (1);

}

3.3. Inet Sockets
Inet sockets are connections between hosts via a tcp/ip socket. This permits connecting to

the server over a remote network connection anywhere on the Internet.

Example

/* Connection to a local host using socket 5137. */
if ((cdl = cdl_open ("inet:5137")) == NULL) {

fprintf (stderr, "cannot open inet socket connection\n");
exit (1);

}

/* Connection to a remote internet host using socket 5137. */
if ((cdl = cdl_open ("inet:5137:foo.bar.edu")) == NULL) {

fprintf (stderr, "cannot open inet socket connection\n");
exit (1);

}

3.4. User-Defined Connections
Since IRAF V2.10.3 client tasks have been able to use an IMTDEV unix environment

variable to set the connection type, the syntax of this variable is the same as described above. If
the cdl_open() procedure is called with a NULL pointer the IMTDEV environment variable will
automatically be checked. To explicitly use this (or any other) variable in the client task the
cdl_open() procedure may be called as e.g.

if ((cdl = cdl_open (getenv("IMTDEV"))) == NULL) {
fprintf (stderr, "cannot open server connection\n");
exit (1);

}

4. Image Display

4.1. Overview of the Display Process
Basic image display is done most easily using the high-level cdl_displayIRAF(),

cdl_displayFITS() and cdl_displayPix() procedures. These routines automatically define an
image WCS, clear the frame, set the frame buffer and center the image in the display. For most
applications these are all that will be needed, but the cdl_writeSubRaster() procedure can also
be used to display an image. For example, to display one image in a mosaic or other cases
where the task needs low-level access to position the image or write raw pixel values.

In these cases it is the responsibility of the client program to prepare the server for
display. The basic steps involved in displaying an image include

- 4 -

Operation CDL Procedure
Selecting the frame cdl_setFrame()
Clear the frame cdl_clearFrame()
Select the frame buffer configuration cdl_selectFB()
Set the frame buffer configuration cdl_setFBConfig()
Scale the image pixels to 201 display values cdl_zscaleImage()
Define the image WCS
Set the image WCS cdl_setWCS()
Compute the raster placement in the frame buffer
Write the pixels to the display cdl_writeSubRaster()

In cases like a mosaic display obviously clearing the frame will only need to be done once and a
single WCS for the mosaic should be defined. For simple display the high-level routines handle
all of these steps for you, they are included here as checklist of what must be considered when
using the CDL for low-level display.

4.2. Displaying IRAF Images
The cdl_displayIRAF() procedure can be used to display an IRAF OIF format

image (i.e. images with a .imh extension) by simply passing in the image name. Pixel files for
the image must be accessible from the local machine but can be in any directory, the HDR$
syntax for the imdir is also recognized. Images may be three dimensional, the band argument is
used to select the image band to be displayed. The frame and fbconfig arguments select the
frame and frame buffer size respectively, the special symbolic value FB_AUTO may be used
for the fbconfig argument to have the procedure automatically select the frame buffer most
appropriate for the image size. If the zscale flag is greater than zero the image will automati-
cally be converted to 8-bit values using the zscale mapping algorithm. The function returns a
positive value if the image cannot be accessed or displayed for any reason, an error message
will be printed.

The cdl_isIRAF() procedure returns a positive value if the filename argument is recog-
nized as an IRAF image, it does not check whether the pixel file can be successfully accessed.
For simply reading the pixels from an IRAF image the cdl_readIRAF() procedure may be used.
The function returns a zero value and sets the output pixel array, image dimensions and pixel
size if successful, otherwise the function returns a positive value. Note that the output pixel
values may need to be scaled before they can be displayed.

Synopsis
int cdl_displayIRAF (CDLPtr cdl, char *fname, int band,

int frame, int fbconfig, int zscale)
int cdl_isIRAF (char *fname)
int cdl_readIRAF (char *fname, int band, uchar **pix,

int *nx, int *ny, int *bitpix, char *title)

4.3. Displaying FITS Images
The cdl_displayFITS() procedure can be used to display a simple FITS image by name.

A "simple" FITS file is assumed to be one containing a single image and having no extensions.
Other types of FITS files may of course be displayed but the client will have to use other means
to import the pixels. FITS image extensions may be supported in a future release of the CDL.
The frame and fbconfig arguments select the frame and frame buffer size respectively, the spe-
cial symbolic value FB_AUTO may be used for the fbconfig argument to have the procedure
automatically select the frame buffer most appropriate for the image size. If the zscale flag is
greater than zero the image will automatically be converted to 8-bit values using the zscale map-
ping algorithm. The function returns a positive value if the image cannot be accessed or
displayed for any reason, an error message will be printed.

- 5 -

The cdl_isFITS() procedure returns a positive value if the filename argument is recognized
as a simple FITS image. For simply reading the image pixels the cdl_readFITS() procedure
may be used. The output pixel array, image dimensions and pixel size are returned if successful
otherwise the function returns a positive value. Note that the returned pixel values may need to
be scaled before they can be displayed.

Synopsis
int cdl_displayFITS (CDLPtr cdl, char *fname, int frame,

int fbconfig, int zscale)
int cdl_isFITS (char *fname)
int cdl_readFITS (char *fname, uchar **pix, int *nx, int *ny,

int *bitpix, char *title)

4.4. Displaying Raw Pixels
The cdl_displayPix() procedure can be used to display an arbitrary array of pixels of any

size. The nx and ny arguments are the raster dimensions, and bitpix is the pixel size and has the
same meaning as the FITS BITPIX keyword. The frame and fbconfig arguments select the
frame and frame buffer size respectively, the special symbolic value FB_AUTO may be used
for the fbconfig argument to have the procedure automatically select the frame buffer most
appropriate for the image size. If the zscale flag is greater than zero the image will automati-
cally be converted to 8-bit values using the zscale mapping algorithm.

Synopsis
int cdl_displayPix (CDLPtr cdl, uchar *pix, int nx, int ny,

int bitpix, int frame, int fbconfig, int zscale)

4.5. Frame Selection
Frame selection is normally done as an argument to one of the display procedures, how-

ever frames may be explicitly selected using the cdl_setFrame() procedure. This allows client
programs to essentially "blink" frames independently, as long as the server supports multiple
frames. The cdl_getFrame() procedure may be used to get the current frame set in the server.

Synopsis
void cdl_setFrame (CDLPtr cdl, int frame)
void cdl_getFrame (CDLPtr cdl, int *frame)

4.6. Clearing the Display
The current display frame may be explicitly cleared using the cdl_clearFrame() pro-

cedure. The frame is also cleared prior to displaying new images by the procedures
cdl_displayPix(), cdl_displayFITS(), and cdl_displayIRAF().

Synopsis
int cdl_clearFrame (CDLPtr cdl)

4.7. Frame Buffer Selection
The default frame buffer used is 512x512, other sizes may be selected using the

cdl_setFBConfig() procedure. To set the frame buffer size the client passes the frame buffer
number as defined in the frame buffer configuration file (see below) while setting the image
WCS. It is important to note that the frame buffer isn’t actually changed in the server until a
subsequent cdl_setWCS() call, either directly or through some other procedure which sets the
WCS (e.g. one of the display procedures).

To get the size of the currently defined frame buffer the user may call the
cdl_getFBConfig() procedure. This returns not only the current configuration number, but the

- 6 -

size as well. To get the size and any arbitrary configuration without actually setting it, the
cdl_lookupFBSize() procedure may be used. Any configuration not actually defined in the
frame buffer configuration file is returned as the default 512x512 size.

Synopsis
void cdl_setFBConfig (CDLPtr cdl, int configno)
void cdl_getFBConfig (CDLPtr cdl, int *configno, int *width,

int *height, int *nframes)
void cdl_lookupFBSize (CDLPtr cdl, int configno, int *width,

int *height, int *nframes)

4.7.1. Automatic Selection
The cdl_selectFB() procedure may be used to select the most appropriate frame buffer to

use for a given image size. If possible a frame buffer the same size as the image will be used,
otherwise one that is larger will be chosen. Rather than simply selecting the first configuration
larger than the image, the procedure searches the entire configuration file selecting the one with
the least empty space in both dimensions. If the reset flag is non-zero this frame is set automat-
ically by the procedure, otherwise the selected dimension is simply returned to the calling pro-
gram. In either case the new frame buffer will not take effect until a new WCS is defined for
the frame.

Synopsis
void cdl_selectFB (CDLPtr cdl, int nx, int ny, int *fb,

int *w, int *h, int *nf, int reset)

4.7.2. The Frame Buffer Configuration File
The size of the frame buffer is not passed directly to the server since this is not part of the

communications protocol used. Instead, the frame buffer number is sent as part of the WCS
header packet. So that both the server and client can know that a particular frame buffer
number corresponds to a specific size, a frame buffer configuration file is used which both the
client and server read.

The default configuration file is /usr/local/lib/imtoolrc, this can be overridden by defining
an IMTOOLRC environment variable naming the file to be used, or by creating a .imtoolrc file
in your home directory. Since the server must also read the same file, this must be done before
starting both the client and server applications.

The format of the frame buffer configuration file is

configno nframes width height [extra fields]

e.g.

1 2 512 512
2 2 800 800
3 1 1024 1024 # comment
: : : :

At most 128 frame buffer sizes may be defined, each configuration may define up to 4 frames,
configuration numbers need not be sequential but should be in ascending order.

4.8. Image WCS Description
The image WCS is defined using the cdl_setWCS() procedure. The WCS defines a map-

ping between any linear coordinate system and the image pixels, for our purposes we will dis-
cuss how the WCS is used to map the frame buffer pixels to image coordinates. It is passed to
the server in a string of the form:

- 7 -

Image_Name_String\n a b c d tx ty z1 z2 zt
where:

X’ = a*X + c*Y + tx
Y’ = b*X + d*Y + ty

The terms a, b, c, and d define a rotation of the WCS wrt the pixel coordinates, the tx and ty
values are translation terms. The remaining three values define the intensity mapping of the
display pixels; z1 is the minimum pixel value used in the transformation, z2 is the maximum
value, and zt defines the type of transformation used (0 for none, 1 for linear, 2 for log10).

The WCS may be set explicitly by the calling program or a default appropriate for the
image will be set automatically by the high-level display procedures, otherwise a WCS for the
frame buffer is defined (i.e. returned coordinates are frame buffer coords). As an example of
how the WCS is defined, the default WCS for an image IMX x IMY pixels in a frame buffer
FBX x FBY pixels is defined as

a = 1.0; /* no rotation */
b = 0.0;
c = 0.0;
d = -1.0;
tx = (IMX / 2) - (FBX / 2) + 1; /* center in FB */
ty = (FBY / 2) + (IMY / 2);
z1 = z1; /* zscale values */
z2 = z2;
zt = 1;

Synopsis
int cdl_setWCS (CDLPtr cdl, char *name, char *title,

float a, float b, float c, float d, float tx, float ty,
float z1, float z2, int zt)

int cdl_getWCS (CDLPtr cdl, char *name, char *title,
float *a, float *b, float *c, float *d, float *tx, float *ty,
float *z1, float *z2, int *zt)

4.9. Image Colormaps
The IIS protocol used does not permit the downloading of user-defined colormaps, all

images are loaded as raw grayscale values according to the XImtool colormap model used by
currently supported servers. All images containing private colormaps or more than the 201
grayscale values defined by the Imtool colormap model must either convert the image to 8-bit
grayscale values by calling the CDL zscale procedures (cdl_computeZscale() and
cdl_zscaleImage()) or scale the images in client code with user LUTs. The CDL zscale pro-
cedures scale image to 201 grayscale values so that they are displayed to the full 8-bit range,
user LUT transformations or user code for converting to grayscale from a private colormap pro-
cedures should do the same.

4.9.1. Imtool Color Model
The IMTOOL color model defines at most 201 grayscale values for use in displaying the

image, a set of 16 static colors are also defined for overlay graphics. Pixel values sent to the
server should be already scaled to this model, i.e. the image pixels should be scaled to the range
1-200, values above this will either represent the overlay colors or will wrap around to 8-bit
values. The CDL zscale procedures will automatically scale arbitrary pixel values to use this
color model, the overlay procedures assume color values are defined for the static color range
201-217 but any 8-bit value may be used.

- 8 -

A summary of the color model values is included below:

Color Description Color Description
0 Background 208 Cyan
1 - 200 Image data 209 Magenta
201 Cursor (white) 210 Coral
202 Background (black) 211 Maroon
203 White 212 Orange
204 Red 213 Khaki
205 Green 214 Orchid
206 Blue 215 Turquoise
207 Yellow 216 Violet
217 Wheat 218-255 undefined

4.10. ZScale Intensity Mapping
Since most display servers are only capable of displaying 8-bit pixel values, images with

more than 8-bits per pixel must be scaled prior to display. For linear transformations this is
typically done using a simple conversion of the image min/max values to the 256 grayscale
values, however this doesn’t produce very good results when most pixel values are near one of
the extremes (usually the image min for astronomical images). To solve this IRAF uses a
zscale mapping algorithm where a sampling grid is used to approximate the image min/max
values rather than computing it directly, a line is then fit to these sample pixels to determine the
optimal transformation to the display values. This is not only more efficient but maps the most
common pixel values to the display range producing a better image.

The CDL has several routines for doing the same transformation: the cdl_computeZscale()
procedure is used to compute the optimal z1 and z2 values (the min/max used for the zscale
transform) for an image of any pixel size. The bitpix argument is the number of bits-per-pixel
for the input array and has the same meaning as for the FITS BITPIX keyword. To then
transform the image using these values (or user-defined values) the cdl_zscaleImage() procedure
is used. The input pixels are modified by this procedure but the array is not reallocated to the
smaller size needed by an 8-bit array. The cdl_setSample() and cdl_setSampleLines() pro-
cedures can be used to change the sampling grid and number of sample points (the default is
600 points on 5 lines). The cdl_setContrast() procedure can be used to change the default con-
trast adjustment to the slope used in the transformation (the default is 0.25). If a value of zero
is given then the minimum and maximum of the intensity sample is used as the z1/z2 value.

Each of the CDL display procedures has a zscale flag to automatically scale the pixels
prior to display. Applications wishing to set their own z1/z2 values will need to call the zscale
procedures and disable this flag. By default cdl_zscaleImage() will use a linear transform, the
cdl_setZTrans() procedure may be used to change this. Acceptable values are
CDL_UNITARY (zero) for a unitary transform, CDL_LINEAR (one) for a linear transform, or
CDL_LOG (two) for a log10 transform.

Synopsis
void cdl_computeZscale (CDLPtr cdl, uchar *pix, int nx,

int ny, int bitpix, float *z1, float *z2)
void cdl_zscaleImage (CDLPtr cdl, uchar **pix, int nx,

int ny, int bitpix, float z1, float z2)

void cdl_setZTrans (CDLPtr cdl, int ztrans)
void cdl_getZTrans (CDLPtr cdl, int *ztrans)
void cdl_setZScale (CDLPtr cdl, float z1, float z2)
void cdl_getZScale (CDLPtr cdl, float *z1, float *z2)

void cdl_setSample (CDLPtr cdl, int nsample)

- 9 -

void cdl_setSampleLines (CDLPtr cdl, int nlines)
void cdl_setContrast (CDLPtr cdl, float contrast)
void cdl_getSample (CDLPtr cdl, int *nsample)
void cdl_getSampleLines (CDLPtr cdl, int *nlines)
void cdl_getContrast (CDLPtr cdl, float *contrast)

4.11. Image Hardcopy
While most servers include some hardcopy capability of their own the CDL provides two

procedures for creating hardcopy images from the client (e.g. for a batch processing applica-
tion). The client will typically read back the entire image, frame buffer, of just a subraster and
pass those pixels to the print procedure. Images will be written as Pseudocolor Postscript (to
preserve the overlay marker colors) and may be disposed to a file using the
cdl_printPixToFile() procedure or to any command string accepting input from stdin (typically
just an ’lpr’ command) by using the cdl_printPix() procedure.

Synopsis
int cdl_printPix (CDLPtr cdl, char *cmd, uchar *pix, int nx,

int ny, int annotate)
int cdl_printPixToFile (CDLPtr cdl, char *fname, uchar *pix,

int nx, int ny, int annotate)

4.12. Image Cursor
The image cursor is read using the cdl_readCursor() procedure. The returned value is

the cursor (x,y) position as floating point value in terms of the currently define image WCS.
Note that this position must be converted to integer if it is to be used in one of the marker pro-
cedures.

Synopsis
int cdl_readCursor (CDLPtr cdl, int sample, float *x,

float *y, char *key)

4.12.1. Cursor Sampling
If the cdl_readCursor() sample flag is non-zero the logical image cursor position is

returned immediately, otherwise the display server will wait for a keystroke before returning the
cursor position. The logical image cursor is the last value set by a cdl_setCursor() call or the
last value returned by a cdl_readCursor() call. When sampling the cursor position the keys-
troke value is undefined.

4.13. Image Readout
The CDL maintains an internal knowledge of where an image has been positioned if it

was displayed using one of the cdl_display* procedures. The cdl_readImage() procedure may
be used to read back the entire image pixels from the server ignoring the region of the frame
buffer outside of the image, the cdl_readFrameBuffer() procedure will read back the contents
of the entire frame buffer. The dimensions of the array are returned in the nx and ny arguments.

Synopsis
int cdl_readImage (CDLPtr cdl, uchar **pix, int *nx,

int *ny)R
int cdl_readFrameBuffer (CDLPtr cdl, uchar **pix,

int *nx, int *ny)R

- 10 -

4.14. Subraster I/O
The cdl_writeSubRaster() procedure is used to write an arbitrary raster to any location in

the display. Similarly the cdl_readSubRaster() procedure is used to read back an arbitrary ras-
ter. When an image has previously been displayed the subraster position is given in image
coordinates (e.g. when writing a subregion of edited pixels), otherwise the position is in frame
buffer coordinates (e.g. to display multiple images per frame you should use the
cdl_writeSubRaster() call). See the section on Marker Coordinates for further explanation of
the coordinate systems used.

Synopsis
int cdl_writeSubRaster (CDLPtr cdl, int lx, int ly, int nx,

int ny, uchar *pix)
int cdl_readSubRaster (CDLPtr cdl, int lx, int ly, int nx,

int ny, uchar **pix)

5. Graphics Overlay

5.1. Marker Coordinates
All marker positions are assumed to be image pixel coordinates, although there is no

requirement that the position be on the image itself. When an image WCS is defined (using the
CDL display procedures or explicitly) the origin of the coordinates used shifts from the frame
buffer lower-left to the lower-left of the image as displayed in the frame. Negative positions
are allowed and will either refer to empty pixels if the frame buffer is larger than the image, or
pixels outside the frame buffer boundaries. Raster I/O requests will be clipped to the frame
buffer endpoints, a request completely outside the frame buffer is an error.

5.2. Mapping a Previously Displayed Image
Ideally any application wishing to draw markers on an image will have also displayed that

image, however the cdl_mapFrame() procedure may be used to map the requested frame for
marker overlay. It does this by reading the WCS defined for that frame and assumes an image
has been displayed and centered in the frame buffer, then resets the internal CDL image posi-
tion. If no image has been displayed the frame buffer is mapped directly. This can be used for
example to map an empty frame for displaying just the markers without an image, or for map-
ping another frame’s WCS for use on the current display. The frame is not changed by the pro-
cedure call however the current WCS is changed.

Synopsis
int cdl_mapFrame (CDLPtr cdl, int frame)

5.3. Marking a Coordinate File
Since a common function for programs will be to mark a list of coordinates, the high-

level cdl_markCoordsFile() procedure is provided to make this easier. The input parameters
include a filename expected to contain a set of (x,y) points (real or integer), and arguments
specifying the point type, size and color to draw. If the label argument is positive each marker
point will be labeled with it’s relative number in the file. The size, type and color arguments all
have the same meaning as for the cdl_markPoint() procedure described below.

Synopsis
int cdl_markCoordsFile (CDLPtr cdl, char *fname, int type,

int size, int color, int label)

- 11 -

5.4. Marker Colors
Markers may be drawn using any 8-bit value, in order to use the static overlay colors the

color must be in the range 201-217 (see above for notes on the XImtool color model). The
"cdl.h" include file for C programs, the "cdlftn.inc" include for fortran programs, or the
"cdlspp.h" include for SPP programs, defines the following symbolic constants for each of the
static overlay colors:

C_BLACK 202 C_CORAL 210
C_WHITE 203 C_MAROON 211
C_RED 204 C_ORANGE 212
C_GREEN 205 C_KHAKI 213
C_BLUE 206 C_ORCHID 214
C_YELLOW 207 C_TURQUOISE 215
C_CYAN 208 C_VIOLET 216
C_MAGENTA 209 C_WHEAT 217

5.5. Marker Types
Currently supported marker types include:

Point Line Box Polyline Polygon
Circle Circular Annuli Ellipse Elliptical Annuli Text

The "cdl.h" include file for C programs, the "cdlftn.inc" include for fortran programs, or
the "cdlspp.h" include file SPP programs, defines the following symbolic constants for each of
the defined Point marker types:

M_FILL 1 M_CIRCLE 64
M_POINT 2 M_STAR 128
M_BOX 4 M_HLINE 256
M_PLUS 8 M_VLINE 512
M_CROSS 16 M_HBLINE 1024
M_DIAMOND 32 M_VBLINE 2048

Point markers are drawn using the cdl_markPoint() procedure, point types may be logi-
cally OR’d to create composite markers, closed shapes such as a circles, diamonds, or squares
may be OR’d with the M_FILL flag to flood-fill the point with the current overlay color.

5.5.1. Point
The cdl_markPoint() procedure is used to mark a specific point on the image using one

of the marker types listed above. The marker is centered at the coordinates specified by the x
and y arguments, type is an integer flag indicating what kind of marker to draw and may be a
composite type by logically ORing two or more marker types. Size is the width and height of
the marker measured in pixel unxits, and color is the color used to draw the marker. If the
number argument is greater than zero that number will be drawn next to the point as a label,
creating text labels for point markers can be done using the cdl_markPointLabel procedure.

Most marker names are fairly obvious but several are worth special mention: The
M_DIAMOND, M_CIRCLE and M_BOX marker types may be logically ORed with the
M_FILL flag to produce a filled marker type. Unless ORd with the M_POINT flag all point
markers will leave the center pixel unchanged. The M_HLINE and M_VLINE markers are
most useful in astronomical applications to mark an individual star, they are horizontal and vert-
ical lines respectively with a gap in the middle third of the marker (the M_HBLINE and
M_VBLINE are identical but with a width of 3 pixels).

Synopsis
int cdl_markPoint (CDLPtr cdl, int x, int y, int number,

- 12 -

int size, int type, int color)
int cdl_markPoint (CDLPtr cdl, int x, int y, char *label

int size, int type, int color)

5.5.2. Line
The cdl_markLine() procedure is used to draw a line of the specified color between

points (xs,ys) and (xe,ye).

Synopsis
int cdl_markLine (CDLPtr cdl, int xs, int ys, int xe, int ye,

int color)

5.5.3. Box
The cdl_markBox() procedure is used to draw a box of the specified color with endpoints

specified by (lx,ly) and (ux,uy). If the fill flag is set the box will be filled with the marker color.

Synopsis
int cdl_markBox (CDLPtr cdl, int lx, int ly, int ux, int uy,

int fill, int color)

5.5.4. Circle
The cdl_markCircle() procedure is used to draw a circle of the specified color with a

center at (x,y) and radius radius. If the fill flag is set the circle will be filled with the marker
color.

Synopsis
int cdl_markCircle (CDLPtr cdl, int x, int y, int radius,

int fill, int color)

5.5.5. Polyline
The cdl_markPolyline() procedure is used to draw a line connecting the npts points

specified by the xpts and ypts array in the desired color.

Synopsis
int cdl_markPolyline (CDLPtr cdl, int *xpts, int *ypts,

int npts, int color)

5.5.6. Polygon
The cdl_markPolygon() procedure is used to draw a closed polygon consisting of npts

vertices specified by the xpts and ypts array in the desired color. The last point in the array will
automatically be connected to the first point by the procedure. If the fill flag is set the circle
will be filled with the marker color.

Synopsis
int cdl_markPolygon (CDLPtr cdl, int *xpts, int *ypts,

int npts, int fill, int color)

5.5.7. Ellipse
The cdl_markEllipse() procedure is used to draw an ellipse of the specified color with a

center at (x,y) and semimajor-axis xrad and semiminor-axis yrad pixels long. A rotation angle
for the ellipse may be specified by passing a non-zero angle argument, the angle is measured in
degrees from the positive x-axis. If the fill flag is set the circle will be filled with the marker
color.

Synopsis
int cdl_markEllipse (CDLPtr cdl, int x, int y, int xrad,

- 13 -

int yrad, float ang, int fill, int color)

5.5.8. Circular Annuli
The cdl_markCircAnnuli() procedure is used to draw nannuli circles separated by sep

pixels each. The circle is centered at (x,y) with an initial radius of radius pixels.

Synopsis
int cdl_markCircAnnuli (CDLPtr cdl, int x, int y, int radius,

int nannuli, int sep, int color)

5.5.9. Elliptical Annuli
The cdl_markEllipAnnuli() procedure is used to draw nannuli ellipses separated by sep

pixels each. The ellipse is centered at (x,y) with an initial semimajor and semiminor axis
specified by the xrad and yrad arguments. Each ellipse will be optionally rotate by an angle
degrees as measured from the positive x-axis.

Synopsis
int cdl_markEllipAnnuli (CDLPtr cdl, x, y, xrad, yrad, ang,

int nannuli, int sep, int color)

5.5.10. Text
The cdl_markText() procedure is used to draw a text string specified by str argument

with an initial position at (x,y) and optionally rotated by angle degrees as measured from the
positive x-axis. The default size is 1.0 and is approximately a 6x13 font, the font size may be
scaled by any fractional amount.

Synopsis
int cdl_markText (CDLPtr cdl, int x, int y, char *str,

float size, float angle, int color)

5.6. Text Fonts
The cdl_setFont() procedure is used to choose between one of four available fonts as the

text marker default: Roman, Greek, Futura, Bold and Times respectively. By default the Roman
font will be used. The width of the lines used to draw the text may also be set.

Synopsis
void cdl_setFont (CDLPtr cdl, int font)
void cdl_setTextWidth (CDLPtr cdl, int width)

A complete listing of the Greek character mappings can be found in the file ’greek.ps’ in the
’doc’ subdirectory of the CDL distribution. The Roman font is the font implemented in
the original version of the CDL and works well for most applications. Both the Greek and
Times fonts are hi-resolution fonts which work best for larger frame buffers but can produce
publication quality text. The Futura font is a simpler font which can produce better results than
the default on small size frame buffers. A Bold font automatically increases the text line width
by one pixel over the current setting and may be used with any font.

5.6.1. In-Line Font Changes
Text markers are drawn using the font selected with the cdl_setFont() routine, however

fonts may be change within a string itself (e.g. to set a Greek character) using a \f escape
sequence. The escape is followed by the character ’R’ to set a Roman font, ’G’ for Greek, ’F’
for futura, ’B’ for bold and ’T’ for Times. Any number of escapes are permitted within a string,
the font change will remain in effect until it is changed, or the end of string at which point any
subsequent strings will again be drawn with the default font. Additionally a ’P’ in the escape
sequence will change the font to the one previously used, whatever that may be.

- 14 -

The CDL also supports a sub/superscripting of text which can only be done with the font
escapes. In this case the escape character followed by a ’U’ produces a superscript and a ’D’
produces a subscript. The changes may be nested permitting several levels of sub/superscripts,
these escapes may also be used in conjunction with a font change to cause the sub/superscript to
be drawn with a different font. A superscript escape will remain in effect until the end of the
string or a \fD escape is seen. Similarly a subscript remains in effect until the end of the string
of a \fU escape. Sub/superscripted text is drawn using a smaller font size, there is presently no
way to specify a different size for the sub/superscripted text.

Summary of Font Escapes

\fR change to Roman font
\fG change to Greek font
\fF change to Futura font
\fT change to Times font
\fB change to bold font
\fP change to previous font
\fU begin relative superscripted text
\fD begin relative subscripted text

5.7. Line Widths and Styles
The cdl_setLineWidth() procedure can be used to set the line width used to draw

polygon or polyline markers, point markers will not be affected. The cdl_setLineStyle() pro-
cedure is used to set a line style other than solid.

Synopsis
void cdl_setLineWidth (CDLPtr cdl, int width)
void cdl_setLineStyle (CDLPtr cdl, int style)

The "cdl.h" include file for C programs, the "cdlftn.inc" include for fortran programs, or
the "cdlspp.h" include file SPP programs, defines the following symbolic constants for each of
the defined line styles:

L_SOLID 0 L_DASHED 1
L_DOTTED 2 L_DOTDASH 3
L_HOLLOW 4 L_SHADOW 5

The hollow line style is drawn with a linewidth of five pixels, two pixels of color, a black
line, and two pixels of color. It is best used when the marker will traverse extreme changes in
brightness, due to the thickness of the line it may work best with larger frame buffers. The sha-
dow linestyle is drawn as two pixels of color and two pixels of black and should be used for
similar brightness variations, however it effectively shows up as a line only two pixels wide and
may be preferred for medium or smaller frame buffers.

The three dashed linestyles are drawn using "gap" spacings of 5 pixels in between line
segments. Whether or not these gaps are resolved depends on the size of the frame buffer being
used and the magnification used in the display server. By default they should resolve com-
pletely using frame buffers up to 1024x1024 pixels, or magnification factors displaying
1024x1024 pixels. If larger sizes are needed the image should be subsampled prior to display to
maintain the marker resolution needed for these linestyles.

5.8. Deleting Markers
When markers are drawn the underlying subraster is first saved to an internal structure,

erasure is done by simply redisplaying the saved raster. Problems can arise however when
markers overlap; when deleting a marker that is under another marker the original pixels can
overwrite the pixels of the marker on top. This is an unfortunate side effect of the simple

- 15 -

scheme used in this version of the package, users can call the cdl_redrawOverlay() procedure
to help clean up any artifacts left behind.

5.8.1. Individual Markers
The cdl_deleteMark() procedure is used to delete a single marker from the display().

The (x,y) argument is either the center position of the marker if that is know by the application,
more typically it will be an approximate position. In the latter case the marker whose center is
closest to this position will be deleted. For markers with no defined center the distance used to
decide if the marker should be deleted is the distance from the argument position to the edge of
the marker. For example, distance from a box or polygon is measured as the distance from to
one of the sides, for text it is the distance to the start of the text string. There is no way to
undelete a marker other than to redraw it.

Synopsis
int cdl_deleteMark (CDLPtr cdl, int x, int y)

5.8.2. The Entire Overlay
To erase all markers currently displayed use the cdl_clearOverlay() procedure. Markers

are erased in the reverse order they were drawn to help reduce the chance that overlaying mark-
ers will leave stray pixels.

Synopsis
int cdl_clearOverlay (CDLPtr cdl)

5.9. Redraw
The cdl_redrawOverlay() procedure can be used to redraw all markers currently in the

display list. This is sometimes needed when subraster I/O procedures are used to redisplay
subregions and overwrite existing markers.

Synopsis
int cdl_redrawOverlay (CDLPtr cdl)

6. ANSI C Function Prototypes
The current release of CDL provides full ANSI C function prototypes for all public and

private procedures. By default these will not be used even on systems with native ANSI com-
pilers, once these have been more thoroughly tested they may be enabled on systems which sup-
port ANSI compilers. In the meantime, to make use of the CDL prototypes users will need to
define the macro CDL_ANSIC either when compiling the program or as a definition in the pro-
gram source preceding the ’cdl.h’ include directive.

For example,

#define CDL_ANSIC
#include "cdl.h"

:
main (int argc, char **argv)

:

or when compiling using something like

cc -DCDL_ANSIC client.c libcdl.a -lm

Function prototypes haven’t been extensively tested as of this date, please report any problems
found.

- 16 -

7. Fortran Language Binding Notes
The Fortran language binding routines are implemented in C but should be accessible

from any fortran program as though they were real fortran subroutines. The calling sequences
are the same as with the C library routines with the following exceptions:

� The CDL package pointer is maintained internally so no ’cdl’ pointer is passed in the
fortran interface.

� All routines which are integer procedures in the C interface return an extra ’ier’ argu-
ment to contain the error flag. All Fortran functions are implemented as subroutines.

� The procedure names are the same except that cdl_ has been replaced with cf in the for-
tran binding. If your compiler is case-sensitive then use all lower case letters.

The binding has been tested on a number of different platforms without problems. The pro-
cedure names haven’t been restricted to the traditional 6-character fortran names since most
modern compilers can handle longer names, if yours isn’t one of them contact iraf@noao.edu
for help in changing the names.

Since the CDL is implemented as a set of C routines, the one aspect that cannot be over-
looked in the fortran binding is the between Fortran and C storage order for arrays. In most
cases this will not be a problem since the CDL routines are just passing around pointers even if
they live for a short while in a fortran program. The problem comes when using the fortran
program to read the arrays, for example in using the array returned by the cfreadIRAF() pro-
cedure, or when passing in arrays for display that originated in the user’s fortran code. In these
cases the array must be transposed to be interpreted correctly. It was assumed that in most
applications arrays returned by CDL procedures would be immediately passed to other CDL
procedures so having the binding routines transpose the array to/from Fortran storage order was
unnecessarily inefficient. This may be changed in later releases if required.

8. SPP Language Binding Notes
The SPP language binding is experimental and is intended to provide a way to quickly

prototype tasks, it should not be used in production code as it may not be as portable as the rest
of the task. In essence this binding is a layer on top of the Fortran binding since most IRAF
platforms still use Fortran as the intermediate code. The calling sequences are the same as with
the Fortran library routines with the following caveats:

� The ’cdlspp.h’ SPP include file is required by all files which call CDL routines. The
binding names are actually SPP macros to resolve the current 6 character limit on pro-
cedure names.

� All character string arguments must be dimensioned to at least SZ_FNAME characters
in length.

� The CDL package pointer is maintained internally so no ’cdl’ pointer is passed in the
fortran interface.

� All routines which are integer procedures in the C interface return an extra ’ier’ argu-
ment to contain the error flag. All SPP functions are implemented as subroutines.

� On HPUX or IBM RS6000 systems the ’cdlspp.h’ file must be edited to remove the
trailing underscores from the procedure name macros. This is because on these platforms
the fortran compiler will not append an underscore to the SPP symbols as it does on other
platforms.

- 17 -

9. IIS Protocol Description
The communications protocol used by the CDL and servers such as XImtool and SAOim-

age, is a slightly modified version of that used by the IIS Model 70. All operations are initiated
by sending a header packet containing a thing id (tid) and subunit selecting the function to be
performed, optionally followed by data up to 32K bytes long. The IIS header packet used is
defined as

struct iism70 {
short tid;
short thingct;
short subunit;
short checksum;
short x, y, z;
short t;

};

The thing count field contains the negative number of bytes of data that will be sent following
the header packet. The IIS header checksum is computed as

checksum = 0177777 - (tid + subunit + thingct + x + y + z + t);

The four IIS registers are set differently depending on the operation, a summary of the header
packets for each operation is summarized below.

IIS Header Packet Summary

TID Subunit Thingct X Y Z T Data
Read Data IIS_READ|PACKED MEMORY -nbytes x y frame - nbytes
Write Data IIS_WRITE|PACKED MEMORY -nbytes x y frame - nbytes
Read Cursor IIS_READ IMCURSOR - - - - - -
Write Cursor IIS_WRITE IMCURSOR - x y wcs - -
Set Frame IIS_WRITE LUT|COMMAND -1 - - - - 2
Write WCS IIS_WRITE|PACKED WCS -N - - frame fb N
Read WCS IIS_READ WCS - - - - - 320
Erase Frame IIS_WRITE | fb FEEDBACK - - - frame - -

Where nbytes = number of bytes expected or written
x = x position of operation in frame buffer coords
y = y position of operation in frame buffer coords
frame = frame number (passed as bitflag (i.e. 1, 2 ,4 8, etc)
fb = frame buffer config number (zero indexed)
N = length of WCS string
wcs = WCS number (usually zero)
Data = the number of bytes of data to be read or written following the header packet.

IIS_WRITE = 0400000
IIS_READ = 0100000
COMMAND = 0100000
PACKED = 0040000
IMC_SAMPLE = 0040000

MEMORY = 001
LUT = 002
FEEDBACK = 005
IMCURSOR = 020
WCS = 021

- 18 -

TID fields can be logically OR’d with the PACKED flag indicating the number of data bytes is
exactly thingct bytes long, otherwise thingct must be specified as half the number of data bytes.
In a cursor read, if the IIS_READ flag is OR’d with IMC_SAMPLE the logical cursor position
(i.e. the last value read or set) is returned immediately, otherwise the server will wait for a
keystroke to be hit before returning a string containing the (x,y) position, wcs of the read, and
the keystroke. When setting the frame you must send a short integer in the data containing the
frame selected.

10. VXIMTOOL Proxy/Display Server Usage
VXIMTOOL is a image display server process much like XIMTOOL, except that all it normally
does is respond to datastream requests to read and write to internal frame buffers maintained as
arrays in memory. Multiple frame buffers and frame buffer configurations are supported. It can
be used to debug CDL programs by printing out the protocol packets received, or can simply be
used as a dummy server in cases where no image display is really needed. By enabling the
-proxy flag the server can also be used to repeat the datastream requests to a list of other servers,
effectively splitting the image display to a number of other servers. See the vximtool man page
for details on other command-line arguments and usage.

The program was originally intended as a debugging tool, either in the development of CDL
clients directly or in cases where the display may need to go to separate screens as part of a
larger project. For example, engineers may wish to "eavesdrop" on the system by viewing
images displayed by CDL clients used as part of a data acquisition system. It can also be used
as a memory-only display server for CDL clients which need to be run in the background as
part of a pipeline processing system requiring a frame buffer for image marking.

In proxy mode the program acts as a relay for the IIS datastream packets, sending image data,
frame requests, etc. to a list of other servers specified on the command line. The effect of this is
to allow a client to display to this program which then re-displays to each of the other named
servers. Of course CDL clients can also do this internally by opening multiple connections,
using vximtool in proxy mode adds the functionality to programs which may use this feature
only ocasionally. A maximum of 8 servers may be named, they may be either on the local host
or a remote machine and connections can be established using either fifos or sockets. See above
or the vximtool man page for details on how to specify the server connection.

The current implementation has a few restrictions users should keep in mind:
� The time to display an image or perform any output operation scales with the number
of connected hosts. Each IIS packet is forwarded to each host in turn before processing
the next input packet, and connection over a slow network will delay the entire process.

� Cursor and image readback are done by sending the request only to the first server
named on the command line. This is done to avoid forcing a cursor mode on all servers
which cannot be terminated when a response is received from only one server, and means
that the first server named should be the one used to control interactive sessions. The
remaining servers however can still respond to cursor requests from other applications
connected to that server on another channel.

� All named servers must be running prior to starting the proxy server. The connection to
the remote servers is established when this task is first run and if no server is running that
connection will be ignored. The task will exit if no remote servers can be found for
display.

� Any connected server that shuts down while the proxy server is running is likely to
cause the program to crash on the next display.

- 19 -

11. C Interface Summary
#include "cdl.h"

CDLPtr cdl_open (imtdev)
int cdl_displayPix (cdl, pix, nx, ny, bitpix, frame, fbconfig, zscale)

char cdl_readCursor (cdl, sample, x, y, key)
int cdl_setCursor (cdl, x, y, wcs)

int cdl_setWCS (cdl, name, title, a, b, c, d, tx, ty, z1, z2, zt)
int cdl_getWCS (cdl, name, title, a, b, c, d, tx, ty, z1, z2, zt)

void cdl_setFrame (cdl, frame)
int cdl_clearFrame (cdl)

void cdl_close (cdl)

int cdl_displayIRAF (cdl, fname, band, frame, fbconfig, zscale)
int cdl_isIRAF (fname)

int cdl_readIRAF (fname, band, pix, nx, ny, bitpix, title)

int cdl_displayFITS (cdl, fname, frame, fbconfig, zscale)
int cdl_isFITS (fname)

int cdl_readFITS (fname, pix, nx, ny, bitpix, title)

void cdl_computeZscale (cdl, pix, nx, ny, bitpix, z1, z2)
void cdl_zscaleImage (cdl, pix, nx, ny, bitpix, z1, z2)

int cdl_printPix (cdl, cmd, pix, nx, ny, annotate)
int cdl_printPixToFile (cdl, fname, pix, nx, ny, annotate)

int cdl_readImage (cdl, pix, nx, ny)
int cdl_readFrameBuffer (cdl, pix, nx, ny)

int cdl_readSubRaster (cdl, lx, ly, nx, ny, pix)
int cdl_writeSubRaster (cdl, lx, ly, nx, ny, pix)

void cdl_selectFB (cdl, nx, ny, fb, w, h, nf, reset)
void cdl_setFBConfig (cdl, configno)
void cdl_getFBConfig (cdl, configno, w, h, nf)

void cdl_lookupFBSize (cdl, configno, w, h, nf)

void cdl_setZTrans (cdl, ztrans)
void cdl_setZScale (cdl, z1, z2)

void cdl_setSample (cdl, nsample)
void cdl_setSampleLines (cdl, nlines)

void cdl_setContrast (cdl, contrast)
void cdl_setName (cdl, imname)
void cdl_setTitle (cdl, imtitle)

void cdl_getFrame (cdl, frame)
void cdl_getZTrans (cdl, ztrans)
void cdl_getZScale (cdl, z1, z2)

void cdl_getSample (cdl, nsample)
void cdl_getSampleLines (cdl, nlines)

void cdl_getContrast (cdl, contrast)
void cdl_getName (cdl, imname)
void cdl_getTitle (cdl, imtitle)

- 20 -

int cdl_mapFrame (cdl, frame)
int cdl_markCoordsFile (cdl, fname, type, size, color, label)

int cdl_markPoint (cdl, x, y, number, size, type, color)
int cdl_markPointLabel (cdl, x, y, label, size, type, color)

int cdl_markLine (cdl, xs, ys, xe, ye, color)
int cdl_markBox (cdl, lx, ly, ux, uy, fill, color)

int cdl_markPolygon (cdl, xarray, yarray, npts, fill, color)
int cdl_markPolyline (cdl, xarray, yarray, npts, color)

int cdl_markCircle (cdl, x, y, radius, fill, color)
int cdl_markCircAnnuli (cdl, x, y, radius, nannuli, sep, color)

int cdl_markEllipse (cdl, x, y, xrad, yrad, rotang, fill, color)
int cdl_markEllipAnnuli (cdl, x, y, xrad, yrad, ang, nannuli, sep, color)

int cdl_markText (cdl, x, y, str, size, angle, color)
int cdl_setFont (cdl, font)

int cdl_setTextWidth (cdl, width)
int cdl_setLineWidth (cdl, width)

int cdl_setLineStyle (cdl, style)
int cdl_deleteMark (cdl, x, y)

int cdl_clearOverlay (cdl)
int cdl_redrawOverlay (cdl)

- 21 -

12. C Example Tasks
The examples shown here are for demonstration purposes only. They are based on work-

ing example tasks in the CDL source examples subdirectory, see the programs there for the full
program listing.

12.1. Display Example

#include <stdio.h>
#include <unistd.h>
#include "cdl.h"

/* DISPLAY -- Example task to display an image as a command-line task.
* This task is meant to show three ways the CDL can be used to display
* an image, see the code comments for a description of each method.
*
* Examples:
* To display a simple IRAF or FITS file:
* % ./display -frame 2 image.imh
* % ./display image.fits
*
* To display a FITS file as a raw image:
* % ./display -nx 512 -ny 512 -depth 16 -hskip 5760 -raw dpix.fits
*
* Usage:
* display [-depth N] [-fits] [-frame N] [-fbconfig N] [-hskip N]
* [-iraf] [-nozscale] [-nx N] [-ny N] [-raw] [-zscale] file
*/

#define NONE -1
#define IRAF 0
#define FITS 1
#define RAW 2

main (argc, argv)
int argc;
char *argv[];
{

CDLPtr cdl;
char *fname, title[128];
int i, status = 0, frame = 1, fbconfig = 0, zscale = 1;
int format = NONE, nx = 0, ny = 0, depth = 8, hskip = 0;
float z1, z2;
int fb_w, fb_h, nf;
unsigned char *pix = NULL;

/* Process the command line options. */
if (argc > 1) {

for (i=1; i < argc; i++) {
if (strcmp (argv[i], "-depth") == 0) depth = atoi (argv[++i]);
else if (strcmp (argv[i], "-fits") == 0) format = FITS;
else if (strcmp (argv[i], "-frame") == 0) frame = atoi (argv[++i]);
else if (strcmp (argv[i], "-fbconfig") == 0) fbconfig = atoi (argv[++i]);
else if (strcmp (argv[i], "-hskip") == 0) hskip = atoi (argv[++i]);
else if (strcmp (argv[i], "-iraf") == 0) format = IRAF;
else if (strcmp (argv[i], "-nozscale") == 0) zscale = 0;
else if (strcmp (argv[i], "-nx") == 0) nx = atoi (argv[++i]);
else if (strcmp (argv[i], "-ny") == 0) ny = atoi (argv[++i]);
else if (strcmp (argv[i], "-raw") == 0) format = RAW;
else if (strcmp (argv[i], "-zscale") == 0) zscale = 1;

}
}

- 22 -

/* Open the package and a connection to the server. */
if (!(cdl = cdl_open ((char *)getenv("IMTDEV"))))

exit (-1);

fname = argv[argc-1];

/* METHOD 1: Displays the image using the high-level format display
* call. Display as an IRAF image if the option was set indicating
* this is the format, otherwise test the file to see if it is anyway.
*/

if (format == IRAF || (format == NONE && cdl_isIRAF (fname))) {
status = cdl_displayIRAF (cdl, fname, 1, frame, FB_AUTO, zscale);

/* METHOD 2: Uses the CDL procedure for getting image pixels from
* a known format, minimal work required to display an image. The
* point here is that you can use this method to process the image
* yourself prior to display, e.g. subsample the pixels, apply a user
* LUT, etc but still use the CDL to get the raw image and do the
* display.
*/

} else if (format == FITS || (format == NONE && cdl_isFITS (fname))) {

/* Get the FITS image pixels, exit w/ an error status if something
* went wrong, the procedure will print what that was.

*/
if (cdl_readFITS (fname, &pix, &nx, &ny, &depth, title)) {

cdl_close (cdl); /* close the package */
exit (1); /* exit w/ error code */

}

/* Now select a frame buffer large enough for the image. The
* fbconfig number is passed in the WCS packet, but the display
* call below will compute the correct WCS for the image and
* transmit that prior to display, all we’re doing here is
* setting up the FB to be used.

*/
if (fbconfig == 0)

cdl_selectFB (cdl, nx, ny, &fbconfig, &fb_w, &fb_h, &nf, 0);

/* Lastly, display the pixels to the requested frame, do any
* zscaling requested using the CDL procedure.

*/
status = cdl_displayPix (cdl, pix, nx, ny, depth, frame,

fbconfig, zscale);

/* METHOD 3: Displays an image of raw pixels. The client code is
* responsible for reading the image and calling all the procedures
* needed for image display, initialize the frame, zscaling pix, etc.
* While we assume a simple raster format in this program, the user
* code can read a compressed image format such as GIF, mosaic multiple
* images for display as a single image, or just about anything that
* produces a raster for display. The intent here is to show all the
* lowest level calls needed for displaying the image.
*/

} else if (format == RAW) {
FILE *fd;
int lx, ly;

if (nx == 0 || ny == 0) {
fprintf (stderr, "No size given for raw data.\n");
exit (1);

}

/* Open the image file if we can. */
if (fd = fopen (fname, "r")) {

- 23 -

/* Seek to the offset specified. */
lseek (fileno(fd), (off_t) hskip, SEEK_SET);

/* Allocate the pixel pointer and read the data. */
pix = (unsigned char *) malloc (nx * ny * (depth / 8));
fread (pix, depth/8, nx * ny, fd);

/* If we’re zscaling and depth is more than 8-bits, do that. */
if (zscale && depth > 8) {

cdl_computeZscale (cdl, pix, nx, ny, depth, &z1, &z2);
cdl_zscaleImage (cdl, &pix, nx, ny, depth, z1, z2);

}

/* Now select a frame buffer large enough for the image. We’ll
* ask that this be reset but the change won’t go to the server
* until we send in a WCS, so compute that as well. For the
* WCS we assume a simple linear transform where the image is
* Y-flipped, the (x,y) translation is computed so it is correct
* for an frame buffer >= than the image size.
*/

cdl_selectFB(cdl, nx, ny, &fbconfig, &fb_w, &fb_h, &nf,1);
cdl_setWCS (cdl, fname, NULL, 1., 0., 0., -1.,

(float) (nx / 2) - (fb_w / 2) + 1, /* X trans. */
(float) (fb_h / 2) + (ny / 2), /* Y trans. */
z1, z2, CDL_LINEAR); /* Z transform */

/* Select and clear the requested frame prior to display. */
cdl_setFrame (cdl, frame);
cdl_clearFrame (cdl);

/* Now display the pixels. We’ll compute the image placement
* ourselves and write the image as a raw subraster of the frame
* buffer. In this case we’ll center the image, but the CDL
* cdl_writeSubRaster() procedure can be used to write arbitrary
* rasters at any point in the frame buffer.
*/
lx = (fb_w / 2) - (nx / 2);
ly = fb_h - ((fb_h / 2) + (ny / 2));

status = cdl_writeSubRaster (cdl, lx, ly, nx, ny, pix);
} else
status = 1;

} else {
if (access (fname, F_OK) == 0)
fprintf (stderr, "’%s’: unknown image format.\n", fname);

else
fprintf (stderr, "’%s’: image does not exist.\n", fname);

status = 1;
}

/* Now just free the pixel pointer to clean up. */
if (pix)

free ((unsigned char *) pix);
cdl_close (cdl); /* close the package */
exit (status);

}

- 24 -

12.2. Interactive Graphics Overlay Example

#include <stdio.h>
#include <unistd.h>
#include <math.h>
#include "cdl.h"

/*
* TVMARK -- Example task for displaying an marking images. This program
* can be used to either display an image and overlay points defined in
* a coordinate file, map an existing display frame for marking, or option-
* ally enter a cursor command loop after either of these providing other
* marking capability. All options support minimum match.
*
* Examples:
* % tvmark dpix.fits
* % tvmark -coords coords -color 205 dpix.fits
* % tvmark -frame 2
* % tvmark -coords coords -interactive dpix.fits
*
* Usage:
* tvmark [-frame N] [-fbconfig N] [-coords <file>] [-size N] [-color N]
* [-nolabel] [-fill] [-interactive] [image]
*/

main (argc, argv)
int argc;
char *argv[];
{

CDLPtr cdl;
char *fname = NULL, *cfname = NULL;
int i, status = 0, fill = 0, frame = 1, fb = FB_AUTO, zscale = 1;
int color = 201, label = 1, size = 9, interactive = 0;
float z1, z2;
int fb_w, fb_h, nf;
unsigned char *pix = NULL;

/* Process the command line options. */
if (argc > 1) {

for (i=1; i < argc; i++) {
if (strncmp(argv[i], "-color",4) == 0) color = atoi (argv[++i]);
else if (strncmp(argv[i], "-coords",4) == 0) cfname = argv[++i];
else if (strncmp(argv[i], "-fbconfig",3) == 0) fb = atoi (argv[++i]);
else if (strncmp(argv[i], "-fill",4) == 0) fill = 1;
else if (strncmp(argv[i], "-frame",3) == 0) frame = atoi (argv[++i]);
else if (strncmp(argv[i], "-interactive",4) == 0) interactive = 1;
else if (strncmp(argv[i], "-nolabel",4) == 0) label = 0;
else if (strncmp(argv[i], "-nozscale",4) == 0) zscale = 0;
else if (strncmp(argv[i], "-size",2) == 0) size = atoi (argv[++i]);

else
fname = argv[i];

}
}

/* Open the package and a connection to the server. */
if (!(cdl = cdl_open ((char *)getenv("IMTDEV"))))

exit (-1);

/* If an image was specified display it first, otherwise assume the
* image has already been loaded in the frame and mark that.
*/

if (fname) {
if (cdl_isIRAF (fname))

status = cdl_displayIRAF (cdl, fname, 1, frame, fb, zscale);
else if (cdl_isFITS (fname))

- 25 -

status = cdl_displayFITS (cdl, fname, frame, fb, zscale);
else {
if (access (cfname, F_OK) == 0)

fprintf (stderr, "’%s’: unknown image format.\n", fname);
else

fprintf (stderr, "’%s’: image doesn’t exist.\n", fname);
status = 1;

}
if (status) goto err_;

} else {

/* If we’ve requested a special frame buffer, set it now. */
if (fb > 0)

cdl_setFBConfig (cdl, fb);

/* Map the current display frame for use as an image. */
cdl_mapFrame (cdl, frame);

}

/* If a coordinate file was specified read the file and mark those
* coords with points.
*/

if (cfname)
cdl_markCoordsFile (cdl, cfname, M_STAR, size, color, label);

/* Lastly, start up an interactive cursor loop if needed. */
if (interactive)

tvmInteractive (cdl, label, fill, color, size);

/* Close the package and clean up. */
err_:cdl_close (cdl);

exit (status);
}

/* TVMINTERACTIVE -- Process commands interactively. */

tvmInteractive (cdl, label, fill, color, size)
CDLPtr cdl;
int label, fill, color, size;
{

float angle = 0.0, rx, ry, txsize = 1.;
int nx, ny, i, x, y, x2, y2;
int number=1, radius=11, xrad=11, yrad=6, nannuli=3, sep=5;
char key, cmd[SZ_NAME], str[SZ_NAME];
unsigned char *pix;

/* Process commands until a ’q’ keystroke is hit. */
while (cdl_readCursor (cdl, 0, &rx, &ry, &key) != ’q’) {

x = (int) (rx + 0.5); /* convert to int pixels */
y = (int) (ry + 0.5);

switch (key) {
case ’:’: /* process a colon command */
putchar (’:’);
gets (str);
for (i=0; str[i] != ’ ’ && str[i]; i++)

cmd[i] = str[i];
cmd[i++] = ’ ’;

if (strcmp (cmd, "angle") == 0) angle = atof (&str[i]);
else if (strcmp (cmd, "color") == 0) color = atoi (&str[i]);
else if (strcmp (cmd, "fill") == 0) fill = atoi (&str[i]);
else if (strcmp (cmd, "number") == 0) number = atoi (&str[i]);
else if (strcmp (cmd, "nannuli") == 0) nannuli = atoi (&str[i]);
else if (strcmp (cmd, "label") == 0) label = atoi (&str[i]);

- 26 -

else if (strcmp (cmd, "sep") == 0) sep = atoi (&str[i]);
else if (strcmp (cmd, "size") == 0) size = atoi (&str[i]);
else if (strcmp (cmd, "txsize") == 0) txsize = atof (&str[i]);
else if (strcmp (cmd, "xrad") == 0) xrad = atoi (&str[i]);
else if (strcmp (cmd, "yrad") == 0) yrad = atoi (&str[i]);
else if (strcmp (cmd, "print") == 0) {

cdl_readFrameBuffer (cdl, &pix, &nx, &ny);
cdl_printPix (cdl, NULL, pix, nx, ny, 1);

} else if (strcmp (cmd, "snap") == 0) {
cdl_readFrameBuffer (cdl, &pix, &nx, &ny);
cdl_printPixToFile (cdl, &str[i], pix, nx, ny, 1);

} else if (strcmp (cmd, "status") == 0) {
printf ("angle = %-5.3gcolor = %d", angle, color);
printf ("fill = %-5dnumber = %d\n", fill, number);
printf ("nannuli = %-5dsep = %d", nannuli, sep);
printf ("size = %-5dtxsize = %g\n", size, txsize);
printf ("xrad = %-5dyrad= %d", xrad, yrad);
printf ("label = %-5d\n", label);

}
break;

case ’?’:
/*help procedures */
break;

case ’p’: /* plus mark */
cdl_markPoint (cdl, x, y, (label ? number++ : 0), size, M_PLUS, color);
break;

case ’x’: /* cross mark */
cdl_markPoint (cdl, x, y, (label ? number++ : 0), size, M_CROSS, color);
break;

case ’.’: /* point mark */
cdl_markPoint (cdl, x, y, (label ? number++ : 0), size, M_POINT, color);
break;

case ’*’: /* star mark */
cdl_markPoint (cdl, x, y, (label ? number++ : 0), size, M_STAR, color);
break;

case ’_’: /* horiz dash mark*/
cdl_markPoint (cdl, x, y, (label ? number++ : 0), size, M_HBLINE, color);
break;

case ’|’: /* vert dash mark */
cdl_markPoint (cdl, x, y, (label ? number++ : 0), size, M_VBLINE, color);
break;

case ’o’: /* circle mark */
cdl_markPoint (cdl, x, y, (label ? number++ : 0), size, M_CIRCLE|fill, color);
break;

case ’s’: /* square mark */
cdl_markPoint (cdl, x, y, (label ? number++ : 0), size, M_BOX|fill, color);
break;

case ’v’: /* diamond mark */
cdl_markPoint (cdl, x, y, (label ? number++ : 0), size, M_DIAMOND|fill, color);
break;

case ’b’: /* Box */
printf ("Hit another key to define the box...\n");
(void) cdl_readCursor (cdl, 0, &rx, &ry, &key);
x2 = (int) (rx + 0.5); y2 = (int) (ry + 0.5);
cdl_markBox (cdl, x, y, x2, y2, fill, color);
break;

case ’c’: /* Circle */
printf ("Hit another key to set radius ...\n");
(void) cdl_readCursor (cdl, 0, &rx, &ry, &key);
x2 = (int) (rx + 0.5); y2 = (int) (ry + 0.5);
radius = (int) sqrt ((double) ((x2-x)*(x2-x) + (y2-y)*(y2-y)));
cdl_markCircle (cdl, x, y, radius, fill, color);

- 27 -

break;
case ’d’: /* Delete marker */

cdl_deleteMark (cdl, x, y);
break;

case ’e’: /* Ellipse */
cdl_markEllipse (cdl, x, y, xrad, yrad, angle, fill, color);
break;

case ’l’: /* Line */
printf ("Hit another key to set line endpoint...\n");
(void) cdl_readCursor (cdl, 0, &rx, &ry, &key);
x2 = (int) (rx + 0.5); y2 = (int) (ry + 0.5);
cdl_markLine (cdl, x, y, x2, y2, color);
break;

case ’t’: /* Text string */
printf ("Text string: ");
gets (str);
cdl_markText (cdl, x, y, str, txsize, angle, color);
break;

case ’C’: /* Circular annuli*/
cdl_markCircAnnuli (cdl, x, y, radius, nannuli, sep, color);
break;

case ’D’: /* Delete all markers*/
cdl_clearOverlay (cdl);
break;

case ’E’: /* Elliptical annuli*/
cdl_markEllipAnnuli (cdl, x, y, xrad, yrad, angle, nannuli, sep, color);
break;

default:
break;

}
}

}

- 28 -

12.3. Image Mosaic Example
#include <stdio.h>
#include <unistd.h>
#include "cdl.h"

/* MOSAIC -- Example task to mosaic several images on a display. Demonstrates
* usage of low-level routines for complex display operations.
*/

main (argc, argv)
int argc;
char *argv[];
{

CDLPtr cdl;
char *fname = NULL, title[128];
int i, j, k, status=0, label=0, frame=1, fb=FB_AUTO, zscale=1;
int sample=1, pad=0, col=204, imx, imy, bitpix, nimages, nim;
int ii, xinit, rowx, rowy, nnx, nny, fb_w, fb_h, nf, mx, my, nx, ny;
float z1, z2;
unsigned char *pix = NULL;

/* Process the command line options. */
if (argc > 1) {

for (i=1; i < argc; i++) {
if (strncmp (argv[i], "-fbconfig",3) == 0) fb=atoi(argv[++i]);

else if (strncmp (argv[i],"-frame",3) == 0) frame=atoi(argv[++i]);
else if (strncmp (argv[i],"-color",3) == 0) col=atoi(argv[++i]);
else if (strncmp (argv[i],"-label",4) == 0) label=1;
else if (strncmp (argv[i],"-nozscale",4) == 0) zscale=0;
else if (strncmp (argv[i],"-nx",3) == 0) nx=atoi(argv[++i]);
else if (strncmp (argv[i],"-ny",3) == 0) ny=atoi(argv[++i]);
else if (strncmp (argv[i],"-pad",4) == 0) pad=atoi(argv[++i]);
else if (strncmp (argv[i],"-sample",4) == 0) sample=atoi(argv[++i]);
else

break;
}

}
nimages = argc - i;

/* Open the package and a connection to the server. */
if (!(cdl = cdl_open ((char *)getenv("IMTDEV"))))

exit (-1);

/* Clear the frame to begin. */
(void) cdl_clearFrame (cdl);

/* Loop over each of the images in the list. */
nim = rowx = rowy = nnx = nny = 0;
for (k=0; k < ny && nim < nimages; k++) {

rowy += nny + pad;
for (rowx = xinit, j=0; j < nx && nim < nimages; j++) {

/* Get the image name for display. */
fname = argv[i++];

/* Figure out what kind of image it is and get the pixels. */
if (cdl_isIRAF (fname))

status = cdl_readIRAF (fname, 1, &pix, &imx, &imy, &bitpix, title);
else if (cdl_isFITS (fname))

status = cdl_readFITS (fname, &pix, &imx, &imy, &bitpix, title);
else {

fprintf(stderr, "’%s’: unknown or nonexistant image.\n", fname);
status = 1;

}
if (status) goto err_;

- 29 -

/* Compute subsampled image size. */
if (sample > 1)

nnx = imx / sample, nny = imy / sample;
else

nnx = imx, nny = imy;

/* Unless we asked for a specific FB size find one large enough
* to handle the mosaic. We don’t check to be sure what’s
* returned is really large enough.
*/

if (nim == 0 && fb == FB_AUTO)
cdl_selectFB (cdl, nx*nnx+(pad*(nx-1)), ny*nny+(pad*(ny-1)), &fb, &fb_w, &fb_h, &nf, 1);

else {
cdl_setFBConfig (cdl, fb);
cdl_lookupFBSize (cdl, fb, &fb_w, &fb_h, &nf);

}

/* Define a WCS for the frame. */
cdl_setWCS (cdl, "image mosaic", title, 1., 0., 0., -1., 0., (float) ny*imy+(pad*(ny+1)), 1., 255., 1);

/* The first time through figure out the placement so the
* entire mosaic is centered in the frame.
*/

if (nim == 0) {
mx = (nx * nnx) + pad * (nx-1);
my = (ny * nny) + pad * (ny-1);
rowy = (fb_h - my) / 2;
xinit = rowx = (fb_w - mx) / 2;

}

/* Compute the zscaled imaged pixels. */
if (zscale) {

cdl_computeZscale (cdl, pix, imx ,imy, bitpix, &z1, &z2);
cdl_zscaleImage (cdl, &pix, imx ,imy, bitpix, z1, z2);

}

/* Subsample the image if requested. */
if (sample > 1) {

int l, m, n=0;
for (l=0; l < imy; l+=sample)

for (m=0; m < imx; m+=sample)
pix[n++] = pix[(l*imx)+m];

}

/* Write the image to the frame buffer. */
if (cdl_writeSubRaster (cdl, rowx, rowy, nnx, nny, pix)) goto err_;

/* Draw the image name as a label. */
if (label) cdl_markText (cdl, rowx+10, rowy+10, fname, 1., 0., col);

nim++; rowx += nnx + pad;
}

}

/* Close the package and clean up. */
err_: cdl_close (cdl);

exit (status);
}

- 30 -

13. Fortran Interface Summary
include "cdlftn.inc"

cfopen (imtdev, ier)
cfdisplayPix (pix, nx, ny, bitpix, frame, fbconfig, zscale, ier)

cfreadCursor (sample, x, y, key, ier)
cfsetCursor (x, y, wcs, ier)

cfsetWCS (name, title, a, b, c, d, tx, ty, z1, z2, zt, ier)
cfgetWCS (name, title, a, b, c, d, tx, ty, z1, z2, zt, ier)

cfsetFrame (frame)
cfclearFrame (ier)

cfclose ()

cfdisplayIRAF (fname, band, frame, fbconfig, zscale, ier)
cfisIRAF (fname, isiraf)

cfreadIRAF (fname, band, pix, nx, ny, bitpix, title, ier)

cfdisplayFITS (fname, frame, fbconfig, zscale, ier)
cfisFITS (fname, isfits)

cfreadFITS (fname, pix, nx, ny, bitpix, title, ier)

cfcomputeZscale (pix, nx, ny, bitpix, z1, z2)
cfzscaleImage (pix, nx, ny, bitpix, z1, z2)

cfprintPix (cmd, pix, nx, ny, annotate, ier)
cfprintPixToFile (fname, pix, nx, ny, annotate, ier)

cfreadImage (pix, nx, ny, ier)
cfreadFrameBuffer (pix, nx, ny, ier)

cfreadSubRaster (lx, ly, nx, ny, pix, ier)
cfwriteSubRaster (lx, ly, nx, ny, pix, ier)

cfselectFB (nx, ny, fb, w, h, nf, reset)
cfsetFBConfig (configno)
cfgetFBConfig (configno, w, h, nf)

cflookupFBSize (configno, w, h, nf)

cfsetZTrans (ztrans)
cfsetZScale (z1, z2)

cfsetSample (nsample)
cfsetSampleLines (nlines)

cfsetContrast (contrast)
cfsetName (imname)
cfsetTitle (imtitle)

cfgetFrame (frame)
cfgetZTrans (ztrans)
cfgetZScale (z1, z2)

cfgetSample (nsample)
cfgetSampleLines (nlines)

cfgetContrast (contrast)
cfgetName (imname)
cfgetTitle (imtitle)

- 31 -

cfmapFrame (frame, ier)
cfmarkPoint (x, y, number, size, type, color, ier)

cfmarkcoordsfile (fname, type, size, color, label, ier)
cfmarkPointLabel (x, y, label, size, type, color, ier)

cfmarkLine (xs, ys, xe, ye, color, ier)
cfmarkBox (lx, ly, ux, uy, fill, color, ier)

cfmarkPolygon (xarray, yarray, npts, fill, color, ier)
cfmarkPolyline (xarray, yarray, npts, color, ier)

cfmarkCircle (x, y, radius, fill, color, ier)
cfmarkCircAnnuli (x, y, radius, nannuli, sep, color, ier)

cfmarkEllipse (x, y, xrad, yrad, rotang, fill, color, ier)
cfmarkEllipAnnuli (x, y, xrad, yrad, ang, nannuli, sep, color, ier)

cfmarkText (x, y, str, size, angle, color, ier)
cfsetfont

cfsettextwidth (width)
cfsetlinewidth (width)

cfsetlinestyle (style)
cfdeleteMark (x, y, ier)

cfclearOverlay (ier)
cfredrawOverlay (ier)

- 32 -

14. Fortran Example Tasks
The examples shown here are for demonstration purposes only. They are based on work-

ing example tasks in the CDL source examples subdirectory, see the programs there for the full
program listing.

14.1. Display Example

C ==
C FDISPLAY -- Example fortran program showing the use of the Client
C Display Library (CDL) Fortran interface for displaying images.
C ==

PROGRAM FDISPLAY
character*64 imname

C Initialize the CDL package
call cfopen (0, ier)
if (ier .gt. 0) then

write (*,*) ’open: Error return from CDL’
goto 999

endif

write (*, "(’Image Name: ’, $)")
read (5, *) imname
write (*, "(’Frame Number: ’, $)")
read (5, *) iframe
write (*, "(’Frame buffer configuration number: ’, $)")
read (5, *) ifb

C If we’ve got a FITS format image, go ahead and display it.
call cfisFITS (imname, isfits)
if (isfits .gt. 0) then

call cfdisplayFITS (imname, iframe, ifb, 1, ier)
else

C We’ve got an IRAF format image, go ahead and display it.
call cfisIRAF (imname, isiraf)
if (isiraf .gt. 0) then

call cfdisplayIRAF (imname, 1, iframe, ifb, 1, ier)
else

C Unrecognized image, punt and exit.
write (*,*) ’Unrecognized image format’

endif
endif

C Clean up and exit.
999 continue

call cfclose (ier)
end

- 33 -

14.2. Interactive Graphics Overlay Example

C ==
C FTVMARK -- Example fortran program showing the use of the Client
C Display Library (CDL) Fortran interface for doing graphics overlay. No
C checking of the error flag is done here for space considerations.
C ==

PROGRAM FTVMARK
include "cdlftn.inc"
character*64 imname

C Initialize the CDL package
call cfopen (0, ier)

write (*, "(’Image Name: ’, $)")
read (5, *) imname
write (*, "(’Frame Number: ’, $)")
read (5, *) iframe
write (*, "(’Frame buffer configuration number: ’, $)")
read (5, *) ifb

C If we’ve got a FITS format image, go ahead and display it.
call cfisFITS (imname, isfits)
if (isfits .gt. 0) then

call cfdisplayFITS (imname, iframe, ifb, 1, ier)
else

C We’ve got an IRAF format image, go ahead and display it.
call cfisIRAF (imname, isiraf)
if (isiraf .gt. 0) then

call cfdisplayIRAF (imname, 1, iframe, ifb, 1, ier)
else

C No valid image given, so map the current display for marking.
call cfmapFrame (iframe)

endif
endif

C Now that we’ve got an image displayed or mapped, enter a cursor loop to mark the image.
call markInteractive ()

C Clean up and exit
999 continue

call cfclose (ier)
end

C MARKINTERACTIVE -- Subroutine for processing the cursor loop.
subroutine markInteractive ()
include "cdlftn.inc"
real angle, rx, ry, txsize
integer nx, ny, x, y, x2, y2, fill, size, color
integer number, radius, xrad, yrad, nannuli, sep
character key
character*64 cmd, str

C Allocate a 1024x1024 array for pixels.
character pix(1048576)

CInitialize the local parameters to use

C Read a cursor keystroke telling us what to do.
10 call cfreadCursor (0, rx, ry, key, ier)

C Round the real cursor position to integer pixel positions.
x = nint (rx + 0.5)
y = nint (ry + 0.5)

- 34 -

C Check the keystroke and take the appropriate action.
C Colon Commands

if (key .eq. ’:’) then
C Read a three character command and value field and process the colon command

read (*,’(A3, i4)’) cmd, ival
if (cmd(1:3) .eq. ’ang’) then

angle = real (ival)
else if (cmd(1:3) .eq. ’col’) then

color = ival
else if (cmd(1:3) .eq. ’fil’) then

fill = ival
:
....and so on to set local variables
:

else if (cmd(1:3) .eq. ’pri’) then
C Print contents of the current frame buffer

call cfreadFrameBuffer (pix, nx, ny, ier)
call cfprintPix ("lpr", pix, nx, ny, 1, ier)

else if (cmd(1:3) .eq. ’sta’) then
....print out the status (value) of variables

endif

C Point Markers
else if (key .eq. ’p’) then

call cfmarkPoint (x, y, 1, size, M_PLUS, color, ier)
else if (key .eq. ’x’) then

call cfmarkPoint (x, y, 1, size, M_CROSS, color, ier)
else if (key .eq. ’_’) then

call cfmarkPoint (x, y, 1, size, M_HBLINE, color, ier)
else if (key .eq. ’o’) then

C Example of a filled point marker
call cfmarkPoint (x, y, 1, size, or(M_CIRCLE,fill), color, ier)

:
....and so on to set other types of point markers

C Other Markers
else if (key .eq. ’b’) then

print ’("Hit another key to define the box")’
call cfreadCursor (0, rx, ry, key, ier)
x2 = nint (rx + 0.5)
y2 = nint (ry + 0.5)
call cfmarkBox (x, y, x2, y2, fill, color, ier)

else if (key .eq. ’d’) then
call cfdeleteMark (x, y, ier)

else if (key .eq. ’e’) then
call cfmarkEllipse (x, y, xrad, yrad, angle, fill, color, ier)

else if (key .eq. ’t’) then
print ’("Text string: ", $)’
read (*,’(A64)’) str
call cfmarkText (x, y, str, txsize, angle, color, ier)

:
....and so on to set other types of markers

C Quit
else if (key .eq. ’q’) then

goto 998
endif

C Loop back until we want to quit
goto 10

998 continue
end

- 35 -

15. SPP Interface Summary
#include "cdlspp.h"

cdl_open (imtdev, ier)
cdl_displayPix (pix, nx, ny, bitpix, frame, fbconfig, zscale, ier)

cdl_readCursor (sample, x, y, key, ier)
cdl_setCursor (x, y, wcs, ier)

cdl_setWCS (name, title, a, b, c, d, tx, ty, z1, z2, zt, ier)
cdl_getWCS (name, title, a, b, c, d, tx, ty, z1, z2, zt, ier)

cdl_setFrame (frame)
cdl_clearFrame (ier)

cdl_close ()

cdl_displayIRAF (fname, band, frame, fbconfig, zscale, ier)
cdl_isIRAF (fname, isiraf)

cdl_readIRAF (fname, band, pix, nx, ny, bitpix, title, ier)

cdl_displayFITS (fname, frame, fbconfig, zscale, ier)
cdl_isFITS (fname, isfits)

cdl_readFITS (fname, pix, nx, ny, bitpix, title, ier)

cdl_computeZscale (pix, nx, ny, bitpix, z1, z2)
cdl_zscaleImage (pix, nx, ny, bitpix, z1, z2)

cdl_printPix (cmd, pix, nx, ny, annotate, ier)
cdl_printPixToFile (fname, pix, nx, ny, annotate, ier)

cdl_readImage (pix, nx, ny, ier)
cdl_readFrameBuffer (pix, nx, ny, ier)

cdl_readSubRaster (lx, ly, nx, ny, pix, ier)
cdl_writeSubRaster (lx, ly, nx, ny, pix, ier)

cdl_selectFB (nx, ny, fb, w, h, nf, reset)
cdl_setFBConfig (configno)
cdl_getFBConfig (configno, w, h, nf)

cdl_lookupFBSize (configno, w, h, nf)

cdl_setZTrans (ztrans)
cdl_setZScale (z1, z2)

cdl_setSample (nsample)
cdl_setSampleLines (nlines)

cdl_setContrast (contrast)
cdl_setName (imname)
cdl_setTitle (imtitle)

cdl_getFrame (frame)
cdl_getZTrans (ztrans)
cdl_getZScale (z1, z2)

cdl_getSample (nsample)
cdl_getSampleLines (nlines)

cdl_getContrast (contrast)
cdl_getName (imname)
cdl_getTitle (imtitle)

- 36 -

cdl_mapFrame (frame, ier)
cdl_markCoordsFile (fname, type, size, color, label, ier)

cdl_markPoint (x, y, number, size, type, color, ier)
cdl_markPointLabel (x, y, label, size, type, color, ier)

cdl_markLine (xs, ys, xe, ye, color, ier)
cdl_markBox (lx, ly, ux, uy, fill, color, ier)

cdl_markPolygon (xarray, yarray, npts, fill, color, ier)
cdl_markPolyline (xarray, yarray, npts, color, ier)

cdl_markCircle (x, y, radius, fill, color, ier)
cdl_markCircAnnuli (x, y, radius, nannuli, sep, color, ier)

cdl_markEllipse (x, y, xrad, yrad, rotang, fill, color, ier)
cdl_markEllipAnnuli (x, y, xrad, yrad, ang, nannuli, sep, color, ier)

cdl_markText (x, y, str, size, angle, color, ier)
cdl_setFont (font)

cdl_setTextWidth (width)
cdl_setLineWidth (width)

cdl_setLineStyle (style)
cdl_deleteMark (x, y, ier)

cdl_clearOverlay (ier)
cdl_redrawOverlay (ier)

cdl_setDebug (level)

