

Gemini Proposal Modes

Or: How to Get the Data You Want When You Want it

Sandy Leggett

NSF's NOIRLab, Gemini Northern Operations

Reach out to the research staff:

http://www.gemini.edu/about/contact-us/gemini-research-staff

Helpdesk: http://www.gemini.edu/observing/helpdesk

NRC · CNRC

Two Telescopes, One Observatory

Gemini North: 19°49.4'N / 155°28.1'W

Gemini South: 30°14.5'S / 70°44.8'W

Images: https://www.gemini.edu/gallery

Gemini Archive

https://archive.gemini.edu/searchform

- Director's Discretionary and Fast Turnaround 6 months
- · all other 12 months

Exceptions can be requested in the proposal.

If your proposal duplicates existing data, you must justify the need for the new observations.

Submitting a Gemini Proposal: Phase I

see also: https://www.gemini.edu/observing/start-here

THE LIFE CYCLE OF GEMINI PROGRAMS

Summary of Observing Proposal Types

see also: https://www.gemini.edu/observing/start-here#Class

	Type	Call Frequency	Principal Investigator Eligibility	6 month period, per telescope	Science Rank Band
	Director's Discretionary	Always open	Any astronomer.	60	1 and 2
	Fast Turnaround	Monthly	Argentina, Brazil, Canada, Korea, Univ. Hawaii (<i>Gemini North only</i>), US. Note – NOT Chile.	120	1 and 2
	Standard Semester	Twice a year	Argentina, Brazil, Canada, Korea, Chile (Gemini South only), Univ. Hawaii (Gemini North only), US (with US Open Skies*).	700	1 and 2
				230	3
	Large and Long	Once a year	Canada and US.	up to 200 hours	1 and 2

*US Open Skies: Applications from astronomers who work at non-U.S. institutions must indicate why the project cannot be done using other facilities available to the investigators.

Argentina, Brazil, Canada, Korea, Chile

(Gemini South only), Univ. Hawaii (Gemini

North only), US.

Poor Weather

Always open

unlimited

(usually execute

50 to 200 hours)

Summary of Observing Proposal Types cont'd

To submit a proposal: https://www.gemini.edu/observing/phase-i/pit

•	Type	Call Frequency	Reviewed By	Typical Over- subscription	Science Rank Band	
	Director's Discretionary	Always open	Gemini Chief Scientist.	2	1 and 2	
	Fast Turnaround	Monthly	The other FT PIs or Co-Is for that cycle, including students.	2	1 and 2	
	Standard Semester	Twice a year	National Time Allocation Committees, then merging done by Gemini's International Time Allocation Committee.	2 to 5 (for worse to better conditions)	1, 2, 3	
	Large and Long	Once a year	Large and Long Program Time Allocation Committee.	5	1 and 2	
	Poor Weather	Always open	Heads of Science Operations at each site.	Not Applicable	4	

Director's Discretionary Time

• Urgent, unique, high impact

nature > nature astronomy > letters > article

Letter | Published: 01 May 2018

Tumbling motion of 11/'Oumuamua and its implications for the body's distant past

Michał Drahus ☑, Piotr Guzik ☑, Wacław Waniak, Barbara Handzlik, Sebastian Kurowski & Siyi Xu

Tumbling motion revealed by DD time using GMOS-North via GN-2017B-DD-7

Image credit: NASA/JPL-Caltech/ Richard Barkus

The Fast Turnaround Program

Completion of dataset, small project or feasibility study

Intermediate-mass Stars Become Magnetic White Dwarfs

Ilaria Caiazzo^{8,1,2}, Jeremy Heyl², Harvey Richer², Jeffrey Cummings^{3,4}, Leesa Fleury², James Hegarty², Jason Kalirai⁵, Ronan Kerr⁶, Sarah Thiele²,

Pier-Emmanuel Tremblay 100 + Show full author list

Published 2020 September 22 • © 2020. The American Astronomical Society. All rights reserved.

The Astrophysical Journal Letters, Volume 901, Number 1

Citation Ilaria Caiazzo et al 2020 ApJL 901 L14

White Dwarfs in clusters: Zeeman splitting reveals magnetic field, reduces estimated gravity, inferred mass reduced from >Chandrasekhar limit to ~1 solar mass.

FT time using GMOS-North and GMOS-South via GS-2019B-FT-104 (ASCC 47), GS-2018B-FT-108 (M 47), and GN-2019A-FT-214 (M 39).

Part of a larger survey identifying massive white dwarfs published in Richer et al. 2021 ApJ 912.

Standard Semester Programs

Projects that are not urgent and require the larger amount of time, RA range, or instrumentation selection available in a regular Call

HST images with GMOS IFU FoV as green rectangles.

The emission-line profiles were best fit with one or two narrow components attributed to ambient gas, plus a broader one attributed to nuclear outflow; the ionized gas emission extends to 26 kpc but the outflows show smaller extents of 8 kpc.

NOTE: multiple semesters, both sites, and the use of archival data.

Gauging the effect of supermassive black holes feedback on quasar host galaxies

B Dall'Agnol de Oliveira 巫, T Storchi-Bergmann, S B Kraemer, M Villar Martín, A Schnorr-Müller, H R Schmitt, D Ruschel-Dutra, D M Crenshaw, T C Fischer

Monthly Notices of the Royal Astronomical Society, Volume 504, Issue 3, July 2021, Pages 3890–3908, https://doi-org.ezproxy.gemini.edu/10.1093/mnras/stab1067

Published: 21 April 2021 Article history ▼

Name	Observation ID	Grating	Filter	Exptime	Spec. res.	\mathbf{FWHM}_{PSF}	$F_{\rm SDSS}/F_{\rm GMOS}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
J082313	GN-2018B-Q-207	R400_G5305	GG455_G0305	6 × 1040	1.00	0.68	0.42
J084135	GS-2018B-Q-110	B600_G5323	open	8 × 1115	0.636	0.65	0.76
J085829	GN-2010B-C-10 ^{<i>a,c</i>}	R400_G5305	i_G0302	2×1800	1.06	0.59	1.14
J094521	GS-2010A-Q-8 ^{b,c}	B1200_G5321	open	4×1300	0.339	0.75	0.89
J123006	GN-2019A-Q-228	R400_G5305	GG455_G0305	3 × 1150	1.05	0.54	0.16
J135251	GN-2019A-Q-228	R400_G5305	open	6×900	1.00	0.55	0.61
J155019	GN-2018A-Q-206	R400_G5305	open	4×1200	1.03	0.55	0.73
J120041	GN-2019A-Q-228	B600_G5307	open	3 × 1250	0.738	0.72	0.50

Notes. Data from Gemini Archive, with published results in ^aLiu et al. (2013a), and ^bHarrison et al. (2014). ^cObserved in two-slit mode (IFU-2), while the remaining galaxies used one-slit mode (IFU-R).

Large and Long Program

For projects requiring a lot of time, and/or observations spread over multiple semesters

Distribution of SDSS quasars from DR14 (contours) and the 272 objects in the GNIRS-DQS sample (symbols) in the luminosity–redshift plane.

Placing High-redshift Quasars in Perspective: A Catalog of Spectroscopic Properties from the Gemini Near Infrared Spectrograph–Distant Quasar Survey

Brandon M. Matthews¹, Ohad Shemmer¹, Cooper Dix¹, Michael S. Brotherton², Adam D. Myers², I. Andruchow^{3,4}, W. N. Brandt^{5,6,7}, D, Gabriel A. Ferrero^{3,4}, S. C. Gallagher⁸, D, S. C. Gallagher

Richard Green⁹ + Show full author list

Published 2021 January 20 \bullet @ 2021. The American Astronomical Society. All r

The Astrophysical Journal Supplement Series, Volume 252, Number 2

Citation Brandon M. Matthews et al 2021 ApJS 252 15

GN-LP-16, PI Shemmer, largest amount of executed time to date, 386 hours between semesters 17B and 20B, producing spectra for 226 sources, publicly available at

http://physics.uwyo.edu/agn/GNIRS-DQS/spectra.html

Also

- Observing time on the Subaru Telescope is available via the Gemini-Subaru time exchange program, see https://www.gemini.edu/observing/phase-i
- Proposal Tips
 - Use the Target-of-Opportunity (ToO) target category even for non-transients
 where you do not yet know the target coordinates (e.g. survey searches, data in reduction)
 - Use the poorest weather conditions you can while still getting the science you need (within a reasonable exposure time):
 - · IQ70 (seeing better than 0.8") conditions are oversubscribed by a factor of about 5
 - IQ85 (seeing better than 1.2") is oversubscribed by a factor of about 2

Signal to noise estimates for different conditions can be generated using the instrument integration time calculators (ITCs) available on the instrument web pages, or Gemini's phase-ii, see

https://www.gemini.edu/observing/phase-ii/ot/ot-description/detailed-element-editor#ITC

Summary of Gemini's Observing Modes

Туре	Call Frequency	Application	https://www.gemini.edu/ observing/phase-i/
Director's Discretionary	Always open	Urgent, unique, high impact	<u>DDT</u>
Fast Turnaround	Monthly	Completion of dataset, small project or feasibility study	<u>FT</u>
Standard Semester	Twice a year (March 1, Sept. 1)	Offers wide range of RA, observing time and instrument capabilities	standard-semester-program
Large and Long	Once a year (December)	For projects requiring a lot of time, and/or observations spread over multiple semesters	<u>LLP</u>
Poor Weather	Always open	For science that can be done in very poor but still usable conditions	<u>PW</u>

