

Universidade Federal de Santa Maria Grupo de Astrofísica

The emission structure and kinematics of the molecular and ionized gas in the inner kiloparsec of nearby active galaxies

Rogemar A. Riffel

Outline

- ✓ Introduction and motivation
- ✓ Electron temperature distributions from GMOS-IFU observations
- ✓ Ionized outflows from GMOS-IFU observations
- ✓ Molecular and ionized gas emission from NIFS observations
- ✓ Conclusions

Introduction

The bulk of galaxy/star formation occurred in the **first 3 Gyr** of the Universe

Co-evolution of SMBH and galaxies

- Observations of quasars at z>6: SMBHs form early, evolving together with the galaxies;
- M_{SMBH} σ : (e.g. Magorrian et al, 1998; Ferrarese & Merrit, 2000; Gebhardt et al. 2000)
- Simulations: SMBHs form in the densest regions: the center of galaxies (e.g. Di Matteo et al. 2008)

AGN winds and shocks

- Identifying and characterizing the processes that transform galaxies from star-forming to quiescent is a fundamental goal of extragalactic astronomy
- AGN winds/jets can be effective in suppressing star formation
- AGN outflows occur in multiple gas phases, especially the most massive (molecular) phases can produce shocks and affect the star formation in their hosts.
- The multiphase nature of AGN outflows is still not well understood.
 What are their geometries and kinetic powers?

AGN winds: observations

- AGN winds and shocks are hardly resolved by observations of distant galaxies (where the bulk of growth occurs)
- But they can be resolved in nearby active galaxies (in which the SMBH is accreting)
- Here, we look for outflows in the inner kpc of nearby active galaxies using IFS

Integral Field Spectroscopy

- **✓** Electron temperature distributions and shocked gas emission GMOS
 - Riffel et al., 2021a (MNRASL, 501, 54), 2021b (MNRASL, 506, 11)

- ✓ Ionized outflows in the optical GMOS
 - Ruschel-Dutra et al. 2021 (MNRAS, 507, 74)

- ✓ Molecular and ionized gas distribution and kinematics NIFS
 - Riffel et al., 2021c (MNRAS, 503, 5161), 2021d (MNRAS, 504, 3265)
 - Riffel et al., in prep.

Electron temperature distributions and shocked emission

(Riffel et al. 2021a, 2021b)

- Motivation: Shocks from AGN outflows may affect the ionization structure and *Te* distribution, particularly in regions where the AGN ionizing photons are shielded by the nuclear obscuration (e.g. Zakamska & Greene, 2014)
- Lack of spatially resolved determinations of $T_{\scriptscriptstyle e}$ in the NLR of AGNs
- High quality GMOS-IFU observations used to map the $T_{\rm e}$ distribution in the inner kpc of 3 luminous Seyferts

Electron temperature distributions and shocked emission in three nearby Seyferts (Riffel et al. 2021a, 2021b)

•Selected because the [OIII]4363 line is detected and spatially resolved, allowing the production of *Te* maps

Electron temperature distributions and shocked emission in three nearby Seyferts (Riffel et al. 2021a, 2021b)

The highest temperatures are observed outside the AGN ionization axis

Electron temperature distributions and shocked emission in three nearby Seyferts (Riffel et al. 2021a, 2021b)

McElroy+ (2015, MNRAS, 446, 2186)

- The temperature increases with increasing line width and [OI]/Hα
- Standard AGN photoionization models can not reproduce the observed temperature distributions
- **Shocks** play an important role in the observed temperature distribution and ionization structure, at least in Mrk79 and Mrk348

11

Where are the shocks?

Black Hole A Radiation flux — Ionizing cone — Outflow Credits: Saito, S & Dors, O.

- ✓ Electron temperature distributions and shocked gas emission GMOS
 - Riffel et al., 2021a (MNRASL, 501, 54), 2021b (MNRASL, 506, 11)

- ✓ Ionized outflows in the optical GMOS
 - Ruschel-Dutra et al. 2021 (MNRAS, 507, 74)

- ✓ Molecular and ionized gas distribution and kinematics NIFS
 - Riffel et al., 2021c (MNRAS, 503, 5161), 2021d (MNRAS, 504, 3265)
 - Riffel et al., in prep.

Sample: 30 local ($z \le 0.02$) AGN hosts that our group has collected over the past decade via observations with the GMOS-IFU

Single slit mode: 13 objects

Two slit mode: 17 objects

Ionized outflows observed with GMOS (Ruschel-Dutra et al. 2021)

Outflows

- W80 > 600 km/s, excluding spaxels whose kinematics is dominated by gravitational motions
- EW (H α) > 6Å, to ensure an accurate value for LHa

Ionized outflows observed with GMOS (Ruschel-Dutra et al. 2021)

Mass outflow rates

$$\dot{M} = M \frac{v}{R}$$

- the mass of the outflow is obtained from the LH α .
- adopting W80/2 for the velocity of the outflow and the maximum distance from the nucleus as the radius R of the outflow.

- ✓ Electron temperature distributions and shocked gas emission GMOS
 - Riffel et al., 2021a (MNRASL, 501, 54), 2021b (MNRASL, 506, 11)

- ✓ Ionized outflows in the optical GMOS
 - Ruschel-Dutra et al. 2021 (MNRAS, 507, 74)

- ✓ Molecular and ionized gas distribution and kinematics NIFS
 - Riffel et al., 2021c (MNRAS, 503, 5161), 2021d (MNRAS, 504, 3265)
 - Riffel et al., in prep.

(Riffel et al. 2021c,2021d)

Ionized gas

Hot (~2000 K) molecular gas

(Riffel et al. 2021c,2021d)

Riffel et al. 2021c: Gas excitation in 6 Seyferts (J and K-band data)

AGN radiation and shocks are the main excitation mechanisms of the H₂ and [Fe II] emission lines

(Riffel et al. 2021c,2021d)

The HLR region is produced by shocks due to outflows.

This corresponds to 29% of the spaxels, usually located more distant from the galaxy nuclei.

(Riffel et al. 2021c,2021d)

Riffel et al. 2021d: K-band data of 36 AGN

- All AGN from the Swift BAT 105 month catalog, at z<0.1, with archival NIFS data.
- Similar distributions in L_{χ} and z for type 1 and type 2 AGN.

(Riffel et al. 2021c,2021d)

(Riffel et al. 2021c,2021d)

- Type 1 and type 2 AGN show similar emission-line flux distributions, ratios, H2 excitation temperatures and gas masses, supporting the AGN unification scenario.
- Type 1 and type 2 differ only in their nuclear Bry equivalent widths, which are smaller in type 1 AGN due to larger contributions of hot dust emission to the K-band continuum in type 1 nuclei.

(Riffel et al. 2021c,2021d)

• The mass of hot molecular and ionised gas in the inner 125 pc radius are in the ranges $10^1 - 10^4 \, \mathrm{M}_{\mathrm{Sun}}$ and $10^4 - 10^6 \, \mathrm{M}_{\mathrm{Sun}}$

• The mass of ionized gas within the inner 125 pc radius alone is more than enough to power the AGN in our sample for a duty cycle of 10⁶ yr at their current accretion rates.

(Riffel et al., in preparation)

- For each galaxy we measure the H₂ and Brg flux distributions and kinematics
- We define a kinematically disturbed region (KDR)
 - W_{80Brg} > 400 km/s
 - W_{80H2} > 330 km/s

(Riffel et al., in preparation)

Mass outflow rates

Ionized gas: $10^{-2} - 100 \,\mathrm{M}_{\mathrm{sun}}/\mathrm{yr}$ (27 objects)

Hot molecular gas: 10^{-4.5}-10⁻¹ M_{sun}/yr (20 objects)

(Riffel et al., in preparation)

The mean radius for the peak of the outflow is 230 +/- 40 pc

(Riffel et al., in preparation)

- The kinetic powers of the ionized outflows correspond to $10^{-5} 3\%$ of the AGN bolometic luminosities, with a median value of 0.0025%.
- The outflows are usually not powerful enough to quench star formation in host galaxies (e.g. Hopkins & Elvis, 2010).

Conclusions

- **√** Shocks play an important role in the observed electron temperature distributions.
- ✓ Shocks are more important in regions away from the AGN ionization axis, where they can be easily observed as the AGN radiation field is shielded by the nuclear dusty torus
- ✓ **Ionized outflows** are detected in most objects (80%) with velocities of ~100 1000 km/s at an outflow rate of 10^{-4} - 10^{2} M_{sun}yr⁻¹
- ✓ Hot H_2 outflows are observed in ~55% of the galaxies with mass rates of 10⁻⁴- 10⁻¹ M_{sun} yr⁻¹
- ✓ The outflows are not powerful enough to supress star formation in the host galaxy.
- ✓ The observed outflow velocities and powers indicate a "maintenance mode" feedback, where the outflows redistribute the gas within the galaxy, but it still remains available for further star formation

Thank you!

