

Wavefront sensing and control for Gemini Planet Imager's Calibration Unit-2.0

Gemini Observatory Science Meeting, July 26th 2022

Garima Singh, Ph.D. NRC Postdoctoral Fellow Herzberg Astronomy & Astrophysics Research Center Victoria, BC, Canada <u>garima.singh@nrc-cnrc.gc.ca</u>

NEW-EARTH Team: William Thompson, Christian Marois, Olivier Lardière, Adam B Johnson, Jean-Pierre Véran, Joeleff Fitzsimmons, Glen Herriot **HAA:** Jennifer Dunn, Tim Hardy, André Anthony, Brenda Matthews **+ External and International Collaborators**

Provide 2nd stage correction of quasi-static speckles and post-AO residuals upstream IFS

GPI's Calibration units

• Replace the dual-arm interferometer (HOWFS) with a common-path interferometer (a.k.a. Self-Coherence Camera) more robust to vibration. This requires a new Focal Plane Mask (FPM).

• Expected star/planet contrast gain up to 100x

Marois et al., SPIE 2020

CAL 2.0 Team Organization Chart (NRC-led effort)

Focal plane wavefront sensing & deformable mirror control

<u>FAST</u> B. Gerard C. Marois	<u>LLOWFS</u> G. Singh B. Gerard	<u>Speckle nulling</u> D. Sivransky A. Potier	<u>Phase diversity</u> M. Lamb
O. Lardière	C. Marois		1
W. Thompson	O. Lardière	Risk mitigation approaches	

NRC Extreme Wavefront control for Exoplanet Adaptive optics Research Topics at Herzberg

Static defects

- Coronagraph is not perfect, always have residual light due to diffraction, can be mitigated by Apodization.
- Manufacturing defects of a coronagraph
- Optical defects
- Amplitude aberration

Dynamic errors

- Low-order aberrations
- Non-common path aberrations (NCPA)
- Post-AO residual halo
- Aliasing
- Fitting-error
- Low-wind effect
- Wind driven halo

Raw on-sky image (SPHERE/VLT)

Cantalloube et al 2019

State-of-the-art raw contrast limit:- $10^{-4} - 10^{-5}$ at > 5 λ /D at NIR wavelengths (Self-luminous young extrasolar giant planets around nearby young stars).

Optical layout of a coronagraphic system

Low-order aberrations

Causes: Temperature variations, thermal distortions, optical/mechanical vibrations, alignment errors due to telescope motors and chromatic errors.

Effects: Starlight leak around a coronagraphic mask, prevent detection at small angles.

On-sky, no low-order corrections (SCExAO/Subaru), PIAA coronagraph

Lyot-stop low-order wavefront sensor (LLOWFS)

Low-order aberrations

Causes: Temperature variations, thermal distortions, optical/mechanical vibrations, alignment errors due to telescope motors and chromatic errors.

Effects: Starlight leak around a coronagraphic mask, prevent detection at small angles.

On-sky, no low-order corrections (SCExAO/Subaru), PIAA coronagraph

On-sky, LLOWFS loop closed on 10 modes Singh et al. 2017

LLOWFS on the NEW-EARTH Lab

NEW-EARTH Lab results with LLOWFS (with modal gain optimization)

Non-Common Path Aberration (NCPA)

Smooth halo: AO-induced fast varying speckles that average out. Add photon noise on the planet detection.

+

Static speckles: evolution lifetime > complete sequence of images (typically 30min-1h).

Can be calibrated a posteriori using observing strategies like angular/spectral differential imaging.

+

Quasi-static speckles: vary slowly during the observing sequence.

NCPA which evolve during science acquisition cannot be calibrated, and leave behind evolving speckles in the images.

Post-AO laboratory image (18s) on THD2/Paris

Self Coherent Camera (SCC)

Baudoz et al. 2006; Galicher et al. 2010, Mazoyer et al. 2013

NEW-EARTH Lab results with SCC

NEI EARTH LAB

16

source

Lab data (narrowband)

Limited by camera & DM stroke resolution; some incoherent light

W. Thompson, C. Marois

& NE team

Expectations with CAL 2.0 (Simulations with SPIDERS instrument/Subaru)

Singh et al., SPIE, 12185-192, 2022

Conclusion

- CAL 2.0 could provide the first estimates of the commonality of true Jupiter analogues.
- A 300-star survey with CAL 2.0 is expected to detect 39 planets.
- Enable detection and atmospheric characterization of lower-mass, closer-in, colder and/or older exoplanets.
- CAL 2.0 will also enable new science within Solar System. Non-coronagraphic imaging at ~0.85μm, high Strehl ratio (>30%) and an angular resolution of 10 mas will enable detections of surface features (craters etc.)
- Improved face-on disk imaging with deeper contrast.
- Direct imaging with the CAL2.0 will enable direct measurements of flux ratio, separation, and position angles of new binaries too close for current systems.

Fig. 23. Project milestones and timelines.

Back-up slides: Closing the loop with SCC

В

1. Capture sinewave interaction matrix

Isolate only the fringes: (push fringed – push unfringed) – (pull fringed – pull unfringed)

2. Invert matrix with Tihkonov regularization:

N modes

Credit: William Thompson

3. To extract modal coefficients, just multiply by the differential image:

4. Iterate

Credit: William Thompson