The Pristine Inner Galaxy Survey (PIGS):

A chemo-dynamical investigation of the oldest and most metal-poor stars in the bulge with GRACES

Federico Sestito
PostDoc Fellow at the University of Victoria

In collaboration with: Kim Venn (UVic), Anke Arentsen (ObAs), David Aguado (U. Firenze), and the Pristine survey
University

Open a window into the early Universe

How did the first stars and first structures form and evolve? What were their properties?

Open a window into the early Universe

Either look at high redshift or hunt for the relics/fossils

Carry the imprints of the First stars

Either look at high redshift or hunt fo the relics/fossils

The most metal-poor stars

Metal-poor stars are not necessarily the First stars

1) First stars form across many
 low-mass halos.

2) Mergers deposit old stars throughout
halo. More stars form in center.

Where to find the oldest and most metal-poor stars?
$[\mathrm{Fe} / \mathrm{H}]<-2.5$

- Inner region (crowded by metal-rich stars, large extinction)
\checkmark In the halo ("easier" to detect)
\checkmark In satellites (faint and distant)

Where to find the oldest and most metal-poor stars?

$[\mathrm{Fe} / \mathrm{H}]<-2.5$

- Inner region (very crowded)
- In the halo ("easier" to detect)
\checkmark In satellites (faint and distant)

The most metal-poor stars are informative on the
chemical evolution of their birth regions

Photometric $[\mathrm{Fe} / \mathrm{H}]$ from the Pristine Ca H\&K filter

$\mathrm{Ca} \mathrm{H} \mathrm{\& K}$ is a proxy for $[\mathrm{Fe} / \mathrm{H}]$ used by various surveys

$(\mathrm{g}-\mathrm{i})_{0}$

The efficiency of the Pristine Ca H\&K filter

- 56% of stars with $[\mathrm{Fe} / \mathrm{H}]_{\text {phot }}<-2.5$ have $[\mathrm{Fe} / \mathrm{H}]_{\text {spec }}<-2.5$
o Much higher efficiency than previous surveys (HK~3\% for EMP)

Hunting for the most metal-poor star @ CFTH/MegaCam

Pristine footprint: $\sim 6200 \operatorname{deg}^{2}$ (June last year, still increasing) PIGS footprint (bulge + Sagittarius dSph): ~300 deg²

The low/medium res spectroscopic follow-up

AAT/AAOmega+2dF
(400 fibres in a 2-degree field)
R~1300 blue ($3800-5600 \AA$)
R~ I I 000 red ($8400-8800 \AA, \mathrm{CaT}$) simultaneously
~ 12000 spectra

Exploring the most metal-poor tail of the inner galaxy

GRACES @ Gemini North (and CFHT)

Gemini Remote Access to CFHT ESPaDOnS Spectrograph (GRACES): Large collecting area of the Gemini North 8.Im $+$
The high resolving power and efficiency of ESPaDOns
Achieved through a 270 m fiber from Gemini North to CFHT

The kinematical revolution in the Gaia era

No difference with the halo: confirmation of the hierarchical assembly of the Milky Way

Low-mass systems merged together at early times forming the proto-Galaxy and providing pristine stars, gas, and dark matter

The connection with the second generation stars from globular clusters

The N-rich stars are connected to the II generation stars from GCs
Ancient and dissolved GCs might constitute up to 25% of the building blocks of the inner galaxy

The connection with the second generation stars from globular clusters

The COMBS survey

Can we do the same with GRACES? Only using Na and Mg

The connection with the second generation stars from globular clusters

The COMBS survey

Rarity of binaries in globular clusters

[Fe/H]~-3.2: Challenging the metallicity floor, again!

$[\mathrm{Fe} / \mathrm{H}] \sim-3.2$: Challenging the metallicity floor, again!

Ancient GCs are different from the MW ones?

A building block polluted by only one low-mass supernova

[^0]

The interesting planar star: accreted early from a DG?

VMP with high eccentric planar orbits (no chemistry yet) found at all [Fe/H] (e.g. Sestito+19,20, Cordoni+2I, Conroy+2I).
Simulations suggest that they are accreted during the early MW assembly (Sestito+2021)

High-res is needed: Is this star part of one or multiple building blocks?

Take-home messages

- Very metal-poor stars (VMPs) are informative of the Milky Way assembly

The majority of VMPs in the inner Galaxy is chemically similar to the halo
\Rightarrow This confirms the models of the hierarchical formation of the Galaxy

- Some stars are connected to II generation globular cluster stars
- These are also chemically similar to extragalactic GCs
- One star challenge the $[\mathrm{Fe} / \mathrm{H}]$ floor for GCs: possibility to form EMP structures at early times
\Rightarrow The planar star suggests that one of the building blocks was similar to a UFD
- This has been polluted by only I or few low mass SNe
- Do we see a coherent planar-ish and eccentric structure accreted at early times?

UVic acknowledge and respect the lək"əŋəən peoples on whose traditional territory the university stands and the Songhees, Esquimalt and WSÁNEĆ peoples whose historical relationships with the land continue to this day.

Backup

The formation site(s) polluted by Pair Instability SNe (PISNe)?

PISNe are predicted to be a common fate for the massive First Stars, therefore the next generation stars might carry the signature of PISNe

Some yields do not depend much on the PISNe mass

PISNe alone or PISNe +SNe ? $\mathrm{NaH}!$

The COMBS survey

\checkmark Mucciarelli\&Bellazzini Teff-Gaia colours relation
< Stefan-Boltzmann for logg
\uparrow Linelist for VMPs from Kielty+2021@GRACES
< EW with iraf, then Moog to get A(X)
\downarrow Check fit in Moog plots for microturbulence and temperature
\uparrow Fe I - Fe Il (un)balance not applied (see Karovicova+2020)
\uparrow NLTE corrections from MPIA grid + Inspect

[^0]: Sestito +2022 , in prep.

