

Gemini Infrared Multi-Object Spectrograph Instrument **Overview**

Suresh Sivanandam

GIRMOS Principal Investigator

University of Toronto

Project Scientist: A. Muzzin

Imaging Project Scientist: A. McConnachie Co-ls:

S. Chapman, P. Hickson, S. Thibault, M. Sawicki, A. Muzzin, S. Christie, J. Atwood,

J. Dunn, S. Roberts, K. Venn, A. Anthony, M. Barnet,

M. Tschimmel, G. Sivo, J. Scharwaechter, S.

Barbod, M. Lamb,

S. Chen, S. Dutt, P. Nkwari, O. Lardiere

+ GIRMOS Team

JWST SMACS 0723 Observation with GIRMOS Fields Overlaid

CAL

Software

Structure

OSEL

GNAO+GIRMOS

I Moving towards a unified system view due to highly coupled performance metrics

Science

Systems Engineering

Concept of Operations

Software

GIRMOS Overview

Tightly coupled with the upcoming Gemini-North AO system, GIRMOS provides:

- High angular resolution infrared imaging spectroscopy of up to 4 objects within the 2' FOV through multi-object AO correction
- Parallel imaging of the Gemini AO corrected field

Open-loop AO

2 arcminute Gemini AO field

Hubble XDF

Multi-Object Integral Field Spectroscopy & Imaging

Science Drivers

Star Formation

Globulars & IMBHs

Galaxy Cores & Black Holes

JWST Follow-up & Transients

Galaxy Evolution & Dynamics

Gravitational Lenses

Reionization & Galaxies

GIRMOS Science Cases

Galactic and Nearby Galaxy Science

- An AO-assisted survey probing the inner regions of Galactic Globular Clusters \bullet
- Stellar Chemodynamics and the Nuclear Star Cluster Around the SMBH of the Milky Way
- Young Star Clusters and Photo-dissociation Regions
- Young Resolved Massive Star Cluster Formation and Evolution ullet
- Stellar Populations of Nearby Starburst Galaxies \bullet
- Broad-band Follow-up of Multi-Messenger Events \bullet

Extragalactic Science Cases

- Kinematics, Star-formation, Metallicities and Stellar Populations of Galaxies at 0.7 < z < 2.7Observations of Distant Galaxy Clusters and Groups: Observing Galaxy Quenching and the Role of Environment at Early Times Starburst Galaxies at z > 2
- \bullet ullet
- A Survey of Massive Quiescent Galaxies at z > 2
- Kinematics, Star-formation, Metallicities and Stellar populations of Gravitationally-Lensed lacksquaregalaxies
- The Evolution of Disk-Dominated Galaxies at z > 3 ightarrow
- Galaxies at Cosmic Dawn (z > 7) \bullet

Reference Science Program – High Redshift (1 < z < 3) Galaxy Survey

Forster Schreiber+2018

Science Goals

 Understand the basic properties of galaxy disks over a wide range of redshift and halo mass at kpc resolution

 How, when and where do galaxies build up their mass: mergers (kinematics) or star formation?

• Do galaxies keep their metals, what is the role of feedback? AGN vs. stellar?

500-hour (250 galaxy) reference survey primarily drives GIRMOS top level spectroscopic requirements

Reference Science Program – High Redshift (1 < z < 3) Galaxy Survey

State-of-the art high angular resolution survey SINS-cZ-SINF's sample only 36 galaxies at z ~ 2. GIRMOS aims to improve sample size by ~10x by significantly increasing survey throughput compared to existing AO instruments.

Reference Science Program – Chemodynamics of Globular Clusters

Terzan 5

- •Intermediate Mass Black Holes (IMBHs) are a missing link between stellar and Supermassive Black Holes
- Many GCs distributed around dusty Galactic centre
- •Such a survey is **ideal for GIRMOS**:
 - •Dusty and crowded: need AO + infrared
 - •Massive bulge GCs have IMBH sphere of influence ~ 3"
 - •Aim to survey > 20 GCs with characterized internal dynamics
 - •Additionally, chemical abundances of these stars can also be extracted to study formation histories

Gemini NIFS Data (Lamb+ in prep.)

Reference Science Program – AO-Assisted Imaging of Transients

A wide range of transients are expected in the coming years with ongoing surveys as well as the Vera Rubin Telescope and Multi-Messenger events

GRB021211 – optical detection by RAPTOR

image starting at: t - t₀ = 64.9 seconds

 $t - t_0 = 9$ minutes

Credit: RAPTOR Team

- •IR observations of GW/GRB kilonovae afterglows require both high angular resolution and fast turnaround.
- •GNAO+GIRMOS and Gemini are the only facility in the world that can provide this combination.
- •10 minute response

Requested Spectroscopic Instrument Modes

Multiple Objects System Multi-Object AO (GIRMOS MOAO)

(Gemini LTAO)

Simulated GIRMOS Performance

Encircled Energy within 0.1"

- Heritage from MOAO Technical Pathfinder (Subaru RAVEN)
- Risk retirement AO testbed operational
- Preliminary design AO peer review this week

Strehl Ratio

System Parameters

AO Image Quality	50% EE in 0.05" in H-band (LTAO) 50% EE in 0.1" in H-band (MOAO) 50% EE in 0.4" in H-band (GLAO)	Field-of-Regard for MOAO	2' diameter patrol field
Wavelength Range	0.95 – 2.4 µm	Number of IFSes	Up to 4
Spectral Bands	0.95 – 1.35, 1.25 – 1.8, 1.63 – 2.35 μm (R~3,000) 1.194 – 1.35, 1.5 – 1.706, 2.11 – 2.379 μm (R~8,000)	Spectral Resolving Power (R)	3,000 and 8,000
Individual IFS FOV (100% coverage)	1.0 x 1.0" 2.0 x 2.0" 4.0 x 4.0"	Spaxel Sampling	0.025" 0.05" 0.1"
Single Object Mode IFS Observable FOV ~2" gaps between IFU fields)	~2.0 x 2.0" ~4.0 x 4.0" ~8.0 x 8.0"	Spaxel Sampling	0.025" 0.05" 0.1"
Overall Spectrograph Throughput	35%	Detectors	HAWAII-2RG 2Kx2K per spectrograph
Imager FOV	85 x 85"	Imager Plate Scale	0.021"
Imager Wavelength Range	0.9 – 2.4 µm	Imager Detector	1x HAWAII-4RG 4Kx4K

JWST NIRSpec IFU – 3x3" (0.1"/spaxel) @ R_{MAX} ~ 2700 Image slicer-based for best low surface brightness performance Three spatial and two spectral modes Simultaneous imaging and spectroscopy possible

Sivanandam et al. (2020), Proc. SPIE

GIRMOS Architecture

Gemini RTC tomographic information & reconstructor changes GIRMOS RTC Image slicer-based 1-2.4 µm spectrographs

Science Light Path

- GIRMOS is implemented through five major optical subsystems
- The instrument will be jointly developed with the new AO facility at Gemini-North
- Our MOAO system will require a close integration with the GNAO system, through their real-time controller (RTC), which will share the tomographic information derived from GNAO laser constellation (LGS) and natural guide star (NGS) wavefront sensors (WFS)
- The GIRMOS AO system will operate for multi-object science cases

Overall Design

GIRMOS Exploded View

Successful Preliminary Design Review in May 2022

CAL – Calibration System **OSEL/MOAO** – 4x Object Selection & MOAO Systems IMGR/IFU – Imager & 4x Integral Field Spectrographs

System Components – OSEL & MOAO

- AO system fully integrated.
- Pick-offs with pinholes visible to imager for acquisition and flexure compensation

System Components – IFUs & IMGR

Conclusions

- GIRMOS is being closely developed with GNAO and will serve as its first light instrument
- the foreseeable future until ELT multiplexed spectroscopy becomes available
- directly benefit a future US-ELT instrument
- Currently in early Critical Design Phase with completion in Fall 2023
- Expected delivery to Gemini late 2026/early 2027 with commissioning plan that coincides with GNAO first light in FY2028

• Multi-object AO integral field spectroscopy critical for future large extragalactic surveys

• GIRMOS will be the most powerful AO-fed instrument for integral-field spectroscopy in

Project consists of an ambitious scientific and technology development plan that will

Acknowledgements

The GIRMOS project gratefully acknowledges its financial support from the Canada Foundation for Innovation (CFI), Ontario Research Fund (ORF), British Columbia Knowledge Development Fund (BCKDF), Fonds de Recherche du Quebec (FRQ), Nova Scotia Research and Innovation Trust (NSRIT), University of Toronto and in-kind and cash contributions from the National Research Council Canada (NRC) and the Association of Universities for Research in Astronomy (AURA) through its Gemini Observatory.

INNOVATION.CA

FONDATION CANADIENNE **POUR L'INNOVATION**

Fonds de recherche Santé

NSRI

Nova Scotia Research and Innovation Trust

