Milky Way Science Revolution: Yesterday, Today, and Tomorrow Burçin Mutlu-Pakdil Dartmouth College

Photo by Reidar Hahn, Fermilab

- New Ultra-Faint Milky Way Satellites New Stellar Streams Brown Dwarf Census • RR Lyrae Variable Star Catalogue

THE DARK IERGY SUR

Rossetto+11; Balbinot+15a,b; Bechtol+15; Drlica-Wagner+15a,15b,20; Simon+15,16,19; Luque+15,17a,17b; Li+15,17,18; Pieres+16,17,20; Albert+16; Hansen+17, 20; Nagasawa+17; Erkal+18; Shipp+18; Wang+18,19; Stringer+19,21; Marshall+19; Rosell+19; Martinez-Vazquez+19; Nadler+19,21; Dal Ponte+20; Cantu+21; Tanoglidis+21; Tavangar+22; Mau+22

Milky Way Lmw

How faint is "ultra-faint"?

Large Magellanic Cloud (LMC)

Mv=-18

~1/10,000 Lmw Mv=-12

Eridanus II

M∨=-7

The Most Dark Matter Dominated Systems

The Oldest Stellar Systems

Are they quenched by reionization?

Brown et al 2014

Brown et al 2014

Era of Digital Surveys

Before DES

After DES

Growing Sample of Milky Way Satellites

Discovery Timeline

8/30

iron-to-hydrogen abundance ratio

Ji et al. 2016, 2022

9/30

Reticulum II: First R-process Enhanced Ultra-Faint Dwarf

Eridanus II: First Ultra-Faint Galaxy with a Star Cluster

Eridanus II has a central star cluster!!!

Magellan+Megacam Deep Imaging

Eridanus II (D~370 kpc)

its star cluster

Crnojević et al. 2016

Eridanus II has a central star cluster!!!

Rule out massive compact halo object (MACHO) as the dominated dark matter at 10-100 solar masses

> Li et al. 2017 (DES Collaboration) (also see Brandt et al. 2017)

Drlica-Wagner et al. 2015 (DES Collaboration)

12/30

Velocity gradient across Tucana III

Simon et al. 2017; Li et al 2018 (DES Collaboration)

11 New Stellar Streams Discovered in DES

14/30

Shipp et al 2018 (DES Collaboration)

The Southern Stellar Stream Spectroscopic Survey (S⁵)

The largest homogeneously analyzed set of streams with full 6D kinematics and metallicities

15/30

Li et al 2022 (S⁵ Collaboration)

DELVE: The DECam Local Volume Exploration Survey

Recently discovered satellites are not isotropically distributed

Leo II **Previously known Dwarfs** Leo I **Discovered in SDSS Discovered between 2015-2019** Sextans ornax

Are they associated with **Magellanic Clouds?**

Jethwa et al. 2016 Dooley et al. 2017 Kallivayalil et al. 2018 Jahn et al. 2019, 2022 Erkal & Belokurov 2019 Pardy et al. 2020 Patel et al. 2020 Santos-Santos et al. 2021 Battaglia et al. 2022 among others

by Marcel S. Pawlowski

MADCASH: Magellanic Analog Dwarf Companions And Stellar Halos Survey

What is the goal? To explore dwarf galaxy formation around low-mass galaxies

Carlin et al, 2016, 2021

First MADCASH Detections

The 8.2-m Subaru / HSC

Carlin et al, 2016

20/30

Carlin, Mutlu-Pakdil, et al. 2021

First MADCASH Detections

NGC 2403 (An LMC Analog)

Carlin et al, 2016

Hubble Space Telescope

21/30

These are the <u>faintest</u> dwarf satellites known around LMC-mass systems beyond the Local Group

The 3.6-m CFHT MegaPrime/MegaCam Imager

McConnachie et al, 2016

PAndAS: The Pan-Andromeda Archaeological Survey

Crnojević et al, 2016, 2019

PISCES: The Panoramic Imaging Survey of Centaurus and Sculptor

Mutlu-Pakdil et al, 2022

PISCES: The Panoramic Imaging Survey of Centaurus and Sculptor

The 8.2-m Subaru Hyper Suprime-Cam (HSC) M94 (D=4.4 Mpc)

Smercina et al, 2018

The Discovery of An Isolated and Quenched Ultra-faint Dwarf Galaxy

DESI Legacy Imaging Surveys Data

Sand, Mutlu-Pakdil et al. 2022

Magellan+IMACS Photometry

DESI Legacy Imaging Surveys Data

Sand, Mutlu-Pakdil et al. 2022

Is it quenched by reionization?

Rubin Observatory

A Preview of What is Possible in the Next Decade

down to Mv~-5

Fill out the census at 3.5 Mpc down to My~-7

Mutlu-Pakdil et al. 2021

Fill out the census at 5 Mpc down to My~-8

A Preview of What is Possible in the Next Decade

6

29/30

It will be possible to push the discovery frontier not just within our own Local Group, but well into the Local Volume in all environments

Mutlu-Pakdil et al. 2021

TAKE AWAY NOTES:

- 1) DES revolutionized the Milky Way Science with discoveries of dwarf galaxies, globular clusters, and stellar systems with extremely low luminosity.
- 2) DES inspired many observational efforts to understand newly discovered systems and expand searches beyond the Local Group.
- 3) Current frontiers are DELVE, S⁵, PISCES, and MADCASH Surveys.
- 4) The coming decade is going to be rich in discoveries with Rubin/LSST.