A wide-scale search for solar system objects with **DECam** in the NOIRLab Source Catalog

Katie M. Fasbender,¹ Dr. David L. Nidever^{1,2}

September 13, 2022

¹Montana State University

²NSF's Optical Infrared Astronomy Research Laboratory

Our Project

With public data in the NOIRLab's Astro Data Archive, largely taken by the **Dark Energy Camera** (**DECam**), we are performing a comprehensive search of the **NOIRLab Source Catalog (NSC)** for **solar system objects (SSOs**).

Outline:

- NSC Data Release 1 (DR1, 2018) and DR2 (2021), planned updates
- SSO detection in the NSC

SSOs identified by high proper motion (μ)

Photometric catalog of 68 billion sources from the **publicly available exposures in the NOIRLab Astro Data Archive**, taken with ground-based instruments (Nidever *et al.* <u>2018</u>, <u>2021</u>)

Instrument	Observatory	Coverage(MMYYYY)	N_{exp}	FOV (°)	CCDs	pixel spacing $('')$	bands
DECam ^a	CTIO Blanco 4m	092012 - 112019	340952	3	62	0.26	ugrizY, VR
$Mosaic-3^{b}$	KPNO Mayall 4m	012016 - 082017	41561	3	4	0.26	z
90Prime ^c	Steward Bok 2.3m	112015 - 022019	29603	1	4	0.45	g,r

 Table 1. Instrument Specifications and coverage in NSC DR2

^aDark Energy Camera Dey et al. (2019); http://www.ctio.noao.edu/noao/node/1033

^b Mosaic-3 Wide Field Imager Dey et al. (2016a); https://www.noao.edu/kpno/mosaic/

 $^{\it c}$ Prime Focus CCD Mosiac Camera Zou et al. (2017)

DR1 object density

NOIRLab Source Catalog

DR1 - 34 billion detections of 2.9 billion unique objects

Nidever et al. 2018, Fasbender & Nidever 2021

DR2 object density

NOIRLab Source Catalog

DR2 - 68 billion detections of 3.9 billion unique objects

Nidever et al. 2021

~80% of the exposures included in the NSC are from DECam

- Data Release 1 (DR1, Nidever *et al.* 2018): 195,489 out of 255,454 total exposures taken by DEcam
- DR2 (Nidever et al. 2021): 340,952 of 412,116 exposures
- DR3 (in development): estimated 400,000 of 500,000 exposures

Number of Objects

Area

10

108

Cumulative Number 10²

DECam + CTIO-4m

10

100

Number of Exposures

1000

of Objects

10000

100

10

10

100

1000

Area (deg² 0001

Cumulative

Survey Name	Instrument	PI	Nexposures	Bands	Depth (mag)	PSF FWHM (")	
DESa	Blanco/DECam	Friedman	58,546	grizY	24.5, 24.3, 23.5, 22.9, 21.7	1.2, 1.1 ,1.0, 0.9, 0.9	
Legacy Surveys:b				100000			
DECaLS ^c	Blanco/DECam	Schlegel & Dey	17,533	grz	24.0, 23.5, 22.5	1.3, 1.2, 1.1	
BASS ^d	Bok/90Prime	Zou & Fan	19,741	gr	23.7, 23.1	1.6, 1.45	
MzLS ^e	Mayall/Mosaic-3	Dey	40,224	z	22.6	1.01	
NEO	Blanco/DECam	Allen	11,800	VR	23.0	~1	
DECaPS ⁸	Blanco/DECam	Finkbeiner	7590	grizY	23.7, 22.8, 22.2, 21.8, 21.0	~1	
Bulge Surveys:							
BDBS ^h	Blanco/DECam	Rich	3849	ugrizY	23.5, 23.8, 23.5, 23.1, 22.5, 21.8	~0.8-1.8	
DSSGB		Saha	3837	ugriz			
Light Echoes ^j	Blanco/DECam	Rest	7622	rVR			
SMASH ^k	Blanco/DECam	Nidever	6645	ugriz	23.9, 24.8, 24.5, 24.2, 23.5	1.2, 1.1, 1.0, 1.0, 0.9	
BLISS ¹	Blanco/DECam	Soares-Santos	3049	griz			
NSC DR1		Nidever	255,454	ugrizYVR	23.1, 23.3, 23.2, 22.9, 22.2, 21.0, 23.1	1.4, 1.3, 1.2, 1.0, 1.0, 1.0, 1.2	

 Table 2

 General Information for the 11 Top Contributing Surveys in NSC DR1, Expanded from Nidever et al. (2018) Table 1

Notes.

^a Dark Energy Survey (Dark Energy Survey Collaboration et al. 2016); https://www.darkenergysurvey.org.

^b Dey et al. (2019); http://legacysurvey.org.

^c DECam Legacy Survey; http://legacysurvey.org/decamls/.

^d Beijing-Arizona Sky Survey (Zou et al. 2017).

e Mayall z-band Legacy Survey (Dey et al. 2016).

f DECam Near Earth Object survey (Allen et al. 2016).

^g DECam Plane Survey (Schlafly et al. 2018); http://decaps.skymaps.info.

^h Blanco DECam Galactic Bulge Survey (Rich 2015, Johnson et al. 2020).

Deep Synoptic Study of the Galactic Bulge.

¹ Light Echoes of Galactic Explosions (Rest et al. 2015).

^k Survey of the Magellanic Stellar History (Nidever et al. 2017); http://datalab.noao.edu/smash/smash.php.

¹ Blanco Imaging of the Southern Sky.

Look at NSC DR2: <u>https://datalab.noirlab.edu/nscdr2</u>

75° 60° Plane 45° 30° Exposure (1) [RA] 15° [Dec] -150° -120° -30° 30° 60° 90° 120° 150° -90° -60° 0° 0° -15° Exposure (2) -30° -45° -60° -75°

Upcoming developments to NSC DR3: (expected 2023)

Upcoming developments to NSC DR3: (expected 2023)

- Improved detection with Source Extractor (Bertin & Arnouts 1996)
- New photometric measurements with DAOPHOT (Stetson 1987)
- Calibration with Gaia DR3, ubercalibration (based on work in Magnier et al. 2020)

Science with the NSC

Examples: (Nidever et al. 2021)

- Stellar streams
- Milky Way satellite dwarf galaxies
- Variable stars
- Solar system objects

MBA Size Distribution

Solar System Objects - an overview

Bimodality in MBA Colors

Ivezic *et al.* 2001

SSO Detection in the NSC

- Good **coverage** (35,000 deg², 2012-2019)
- Median depth ~22 mag in all seven photometric bands
- All exposures analyzed with the same method
 = uniformity in data across sky
- Much diversity in data (exposure time, spatial/temporal coverage patterns, multiple filters, crowded/sparse fields, etc.)
- Diverse NSC data = cast a wide net

Detection

- Measurement spacing $\Delta s < 0.5$ " NSC objects table
- 0.5" < ∆s < 11" iterative clustering with NSC measurements table
- $\Delta s > 11''$ Hough transform approach

Moving objects in the NSC (ecliptic coordinates)

SSO detections in the NSC

600,000+ detections

Color	# Tracklets	Multicolor	# Tracklets
g–r	107,604	g + r + i	50,222
r−i	70,557	r + i + z	16,323
g–i	70,161	g + r + z	9518
i-z	30,706	g + i + z	8505
g–z	13,335	i + z + Y	2806
r–z	22,563	r + i + Y	940

Fasbender & Nidever 2021

SSO detections in the NSC

Median tracklet magnitude = 21.9 mag

0	15	Color-	coded by	60 b	75	90
4				-		-
-						-
6						-
						-
8			A N R	1. 44		
0					Sec. 1	
4		27		1.10	1.1.1	S.
1			1	100	1.1	3
2				1		
	Color.	10				-
4	1				1.0.0	

0.0

0.5

q-

1.0

2.0

1.5

band	# tracklets
u	$5,\!400$
g	$138,\!903$
r	$161,\!229$
i	$129,\!610$
z	$47,\!948$
Y	$7,\!570$
VR	192,178

SSO detections in the NSC

Streaked SSO detections identified as individual sources in NSC DR1&2 - Data Release 3 will include source photometry

Initial Orbits

NSC short-arc (<1 day) MBAs

٧S

Summary

• The All-Sky NOIRLab Source Catalog, largely comprised of DECam images, is a valuable and public photometric catalog with multiple science uses

 Detections of solar system objects from a wide range of solar distances are represented in NSC DR1&2; the third data release will have improved measurements and added photometry

Thank you to the community!

Acknowledgements

This work is made possible by the National Science Foundation's National Optical-Infrared Research Laboratory (<u>https://www.noirlab.edu</u>) and the National Optical Astronomy Observatory (<u>https://www.noao.edu</u>).

Computational efforts were performed on the Hyalite High Performance Computing System and the Tempest Research Cluster, operated and supported by University Information Technology Research Cyberinfrastructure at Montana State University.

