Probing the dynamic environment near black holes with Gemini and JWST

Alex Tetarenko

NASA Einstein Fellow Texas Tech University

Eli Pattie, Tom Maccarone (Texas Tech), Federico Vincentelli (IAC), and PG Casella (INAF)

With special thanks to Ricardo Salinas, Zach Hartman, and Steve Howell

Black Hole X-ray Binaries

- Black hole accreting matter from a companion star
- Rapidly evolve through bright outburst periods on timescales of days to months
- Emit across the electromagnetic spectrum

Multi-wavelength Fast Timing of X-ray Binaries

Rob Fender

OIR Variability Studies in X-ray Binaries

Casella et al. 2010

Quasi-periodic Oscillation (QPO)

Ingram & Motta 2019

Malzac et al. 2018

Timing Metrics Cheat Sheet

Power Spectra — Amplitude of variability on different timescales.

Lags — Delays between intensity fluctuations.

Coherence — How correlated are our signals?

Gemini's `Alopeke and Zorro

- Tens of ms time resolution in two simultaneous filters.
- 60 arcsec FOV in wide-field mode.
- `Alopeke on North, Zorro on South for full sky coverage.
- Rapid ToO response and coordination with multiwavelength facilities.

4U 1543-47

Timeline

- First outburst in 17
 years detected in Jun
 2021.
- Outburst fading in Jan 2022.
- Re-flare in Feb 2022.
- Our observations in March 2022.

Tetarenko et al., in prep

4U 1543-47 - Zorro

g-band (479 nm)

Rapid flaring clearly observed!

z-band (947 nm)

Tetarenko et al., in prep

Alex Tetarenko AAS 241

Fourier Power Spectra

- Evolving optical quasi-periodic oscillation (QPO)!
- Also see an IR QPO at frequencies
 ~factor of 2 lower.
- No significant QPO feature in X-ray.

A closer look at the QPO

Tetarenko et al., in prep

- Two scenarios for multi-band QPO:
 - Observing different harmonics in different bands.
 - QPO is evolving with time.

How is the variability connected?

- Is the emission correlated?
 - Red and blue optical
 - X-ray and IR ✓
 - X-ray and optical

Vincentelli et al., in prep

Conditions in the Jet/Accretion Flow

- Precessing jet and/or precessing inner accretion flow (e.g., Malzac et al. 2018, Veledina et al. 2013).
- Why no X-ray QPO?
 - Obscured accretion flow.
 - Low inclination source.
 - Low S/N.

Synchronizing Gemini + JWST

- JWST provides rapid, continuous time-series over a broad mid-IR wavelength range (5-14 um).
- High sensitivity (factor of 20 improvement over WISE).
- Highly constraining for different models of time variability (jet plasma shocks vs hot inner accretion flow).

The JWST/Gemini/ALMA campaign that never was...

Summary

- Multi-wavelength spectral-timing is an incredibly powerful tool for unlocking complicated jet and accretion physics.
- We need a suite of fast timing capable facilities to take full advantage of the time-domain.
- Gemini's `Alopeke/Zorro + JWST offers exciting new options in the optical/infrared regimes.

Thank you!

